Adaptive robust control with slipping parameters estimation based on intelligent learning for wheeled mobile robot

控制理论(社会学) 滑倒 打滑(空气动力学) 估计员 移动机器人 人工神经网络 滑移率 机器人 工程类 计算机科学 控制器(灌溉) 人工智能 数学 汽车工程 控制(管理) 制动器 机械工程 农学 统计 生物 航空航天工程
作者
Moharam Habibnejad Korayem,M. Safarbali,Naeim Yousefi Lademakhi
出处
期刊:Isa Transactions [Elsevier]
卷期号:147: 577-589
标识
DOI:10.1016/j.isatra.2024.02.008
摘要

The widespread use of wheeled mobile robots (WMRs) in many fields has created new challenges. A critical issue is wheel slip, which, if not accurately determined and controlled, causes instability and deviation from the robot's path. In this paper, an intelligent approach for estimating the longitudinal and lateral slip of wheels is proposed that can effectively compensate for the negative effects of slippage. The proposed algorithm relies on three regression networks to estimate the longitudinal slip ratio of the right and left wheels and sideslip angle on terrains with different friction coefficients. The datasets collected during tests on different surfaces with various maneuvers are used to train the artificial neural networks (ANNs). A developed dynamic model of a WMR considering wheel slip and modified traction force is presented. The adaptive robust controller, based on sliding mode control (SMC), is introduced to deal with the problems related to slipping, unknown uncertainties, and disturbances. The simulation results demonstrate that the presented controller has better performance than SMC in handling external disturbances and uncertainties, which leads to reduction in tracking error and faster convergence to zero. The proposed controller with an intelligent slip estimator, has been applied to a four-wheel mobile robot to demonstrate its effectiveness and feasibility. The high accuracy of slip estimation in the mentioned intelligent algorithm has resulted in the presented method being on average 26% more effective in reducing the tracking error than the control method without slip compensation in each test for circular trajectory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amosummer完成签到,获得积分10
刚刚
可爱的香菇完成签到 ,获得积分10
1秒前
不安煎蛋发布了新的文献求助20
2秒前
2秒前
Orange应助Once采纳,获得10
2秒前
文哲发布了新的文献求助10
3秒前
3秒前
5秒前
木子完成签到 ,获得积分10
5秒前
Shadow完成签到 ,获得积分10
9秒前
珂兰发布了新的文献求助10
10秒前
文哲完成签到,获得积分10
11秒前
小红书求接接接接一篇完成签到,获得积分10
12秒前
Bella完成签到 ,获得积分10
15秒前
16秒前
酷波er应助bravo采纳,获得10
17秒前
keyanzhang完成签到 ,获得积分10
17秒前
NexusExplorer应助Bobobobobo122采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
fifteen应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助秀丽的咖啡采纳,获得10
23秒前
明芷蝶完成签到,获得积分10
25秒前
blush完成签到,获得积分10
25秒前
25秒前
一一应助九卫采纳,获得20
27秒前
Once完成签到,获得积分10
27秒前
在水一方应助碳酸芙兰采纳,获得10
27秒前
科研通AI2S应助幸运幸福采纳,获得10
27秒前
wwe完成签到,获得积分10
28秒前
28秒前
李总要发财小苏发文章完成签到,获得积分10
30秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212387
求助须知:如何正确求助?哪些是违规求助? 2861232
关于积分的说明 8127731
捐赠科研通 2527172
什么是DOI,文献DOI怎么找? 1360782
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615664