Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI

深度学习 卷积神经网络 计算机科学 分割 人工智能 可视化 磁共振成像 机器学习 模式识别(心理学) 医学 放射科
作者
Ramy A. Zeineldin,Mohamed Esmail Karar,Ziad Elshaer,Jan Coburger,Christian Rainer Wirtz,Oliver Burgert,Franziska Mathis-Ullrich
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:17
标识
DOI:10.1038/s41598-024-54186-7
摘要

Abstract Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as “black box” models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians’ trust in such deep learning systems towards applying them clinically. To facilitate TransXAI model development and results reproducibility, we will share the source code and the pre-trained models after acceptance at https://github.com/razeineldin/TransXAI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IvyLee完成签到,获得积分10
2秒前
莫x莫完成签到 ,获得积分10
3秒前
积极冰淇淋完成签到,获得积分10
3秒前
zzm发布了新的文献求助10
3秒前
Yolo关注了科研通微信公众号
6秒前
hrrypeet完成签到,获得积分10
6秒前
TTTHANKS完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
9秒前
great7701完成签到,获得积分10
9秒前
英姑应助赟糖采纳,获得10
9秒前
CWC完成签到,获得积分10
11秒前
12秒前
QI发布了新的文献求助10
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
小小富应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
17秒前
英吉利25发布了新的文献求助20
19秒前
wu无完成签到,获得积分10
21秒前
平淡南霜完成签到,获得积分10
22秒前
22秒前
赟糖发布了新的文献求助10
22秒前
llchen完成签到,获得积分0
23秒前
23秒前
24秒前
陈_研发布了新的文献求助10
26秒前
所所应助Sch采纳,获得10
27秒前
阿元发布了新的文献求助10
28秒前
jxzhou完成签到 ,获得积分10
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717