已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI

深度学习 卷积神经网络 计算机科学 分割 人工智能 可视化 磁共振成像 机器学习 模式识别(心理学) 医学 放射科
作者
Ramy A. Zeineldin,Mohamed Esmail Karar,Ziad Elshaer,Jan Coburger,Christian Rainer Wirtz,Oliver Burgert,Franziska Mathis-Ullrich
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:17
标识
DOI:10.1038/s41598-024-54186-7
摘要

Abstract Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as “black box” models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians’ trust in such deep learning systems towards applying them clinically. To facilitate TransXAI model development and results reproducibility, we will share the source code and the pre-trained models after acceptance at https://github.com/razeineldin/TransXAI .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄天玉发布了新的文献求助10
刚刚
田様应助Lucky采纳,获得10
2秒前
呜呜呜应助橘猫采纳,获得10
2秒前
diaoyulao完成签到,获得积分10
5秒前
顺顺尼发布了新的文献求助10
8秒前
likexin完成签到,获得积分10
9秒前
Ava应助niu采纳,获得10
14秒前
灰灰完成签到,获得积分10
14秒前
学霸宇大王完成签到 ,获得积分10
17秒前
养乐多敬你完成签到 ,获得积分10
18秒前
19秒前
19秒前
搞怪的白云完成签到 ,获得积分10
19秒前
顺顺尼完成签到,获得积分10
22秒前
23秒前
23秒前
慕青应助科研通管家采纳,获得10
23秒前
叶初发布了新的文献求助10
24秒前
zx完成签到,获得积分10
26秒前
niu发布了新的文献求助10
28秒前
共享精神应助阔达的水壶采纳,获得10
31秒前
复杂妙海完成签到,获得积分10
36秒前
咸鱼完成签到,获得积分10
36秒前
37秒前
科研通AI6.1应助云天采纳,获得100
37秒前
Cakoibao应助怡然的凌兰采纳,获得20
39秒前
雪影完成签到 ,获得积分10
42秒前
45秒前
科研通AI6.2应助_panacea采纳,获得10
45秒前
49秒前
叶初完成签到,获得积分10
50秒前
开心热狗发布了新的文献求助30
51秒前
53秒前
54秒前
56秒前
Lucky发布了新的文献求助10
56秒前
Cc发布了新的文献求助10
57秒前
59秒前
LYF000666发布了新的文献求助10
59秒前
开心热狗完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880233
求助须知:如何正确求助?哪些是违规求助? 6569867
关于积分的说明 15689467
捐赠科研通 4999880
什么是DOI,文献DOI怎么找? 2694095
邀请新用户注册赠送积分活动 1635902
关于科研通互助平台的介绍 1593351