Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI

深度学习 卷积神经网络 计算机科学 分割 人工智能 可视化 磁共振成像 机器学习 模式识别(心理学) 医学 放射科
作者
Ramy A. Zeineldin,Mohamed Esmail Karar,Ziad Elshaer,Jan Coburger,Christian Rainer Wirtz,Oliver Burgert,Franziska Mathis-Ullrich
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1038/s41598-024-54186-7
摘要

Abstract Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as “black box” models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians’ trust in such deep learning systems towards applying them clinically. To facilitate TransXAI model development and results reproducibility, we will share the source code and the pre-trained models after acceptance at https://github.com/razeineldin/TransXAI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shain发布了新的文献求助10
1秒前
1秒前
4秒前
5秒前
5秒前
CAIJING完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助li采纳,获得30
8秒前
圣晟胜完成签到,获得积分10
8秒前
张张张发布了新的文献求助10
9秒前
腾腾发布了新的文献求助10
9秒前
科研的苦发布了新的文献求助10
9秒前
脑洞疼应助KerwinYang采纳,获得30
10秒前
打打应助科研通管家采纳,获得10
11秒前
小鸭子应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
和平使命应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
小鸭子应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
和平使命应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
小鸭子应助科研通管家采纳,获得10
12秒前
白菜发布了新的文献求助10
13秒前
蒋时晏应助FartKing采纳,获得30
13秒前
科研張完成签到,获得积分0
15秒前
17秒前
张张张完成签到,获得积分10
18秒前
20秒前
21秒前
越遇完成签到 ,获得积分10
23秒前
RATHER发布了新的文献求助10
23秒前
Shirley发布了新的文献求助10
24秒前
何桶完成签到 ,获得积分10
24秒前
虚幻青发布了新的文献求助10
27秒前
生椰拿铁完成签到,获得积分10
29秒前
xiejuan完成签到,获得积分10
30秒前
dhfify完成签到,获得积分10
30秒前
义气莫茗完成签到 ,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134