Hybrid Task Scheduling in Cloud Manufacturing With Sparse-Reward Deep Reinforcement Learning

强化学习 作业车间调度 计算机科学 调度(生产过程) 人工智能 部分可观测马尔可夫决策过程 机器学习 数学优化 地铁列车时刻表 马尔可夫链 数学 马尔可夫模型 操作系统
作者
Xiaohan Wang,Yuanjun Laili,Zhang Li,Yongkui Liu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tase.2024.3371250
摘要

Cloud manufacturing (CMfg) converts the traditional manufacturing system into an Internet-of-things-enabled (IoT-enabled) manufacturing system, where both manufacturing and computational tasks must be scheduled among distributed and heterogeneous resources. Deep reinforcement learning (DRL) has recently become a promising idea for task scheduling in CMfg. However, existing DRL-based methods depend heavily on problem-specific reward engineering and struggle to represent hybrid decision variables. To this end, this paper proposed the sparse-reward deep reinforcement learning (SDRL) method to solve the hybrid task scheduling problem in CMfg. First, the hybrid task scheduling model in CMfg is constructed to minimize the makespan. We reformulate the studied problem as a partially observable Markov decision process (POMDP). Then, the objective hindsight experience replay (objective HER) mechanism is proposed to alleviate the sparse reward issue, through which the scheduling policy can be effectively trained without problem-specific reward engineering. The continuous action space is defined to represent hybrid decision variables, and the implicit action-selection mapping is utilized to alleviate the boundary effect. Numerical experiments validated the effectiveness and superiority of our method compared to eleven popular scheduling algorithms including evolutionary algorithms and DRL. Compared to mainstream DRL scheduling methods, the proposed SDRL outperforms the second-best one at most by $23.6\%$ regarding generalization, and a scheduling solution can be generated in $0.5$ seconds. Note to Practitioners —With the intelligentization of the CMfg platform, hybrid tasks, including manufacturing and computational tasks, need to be scheduled simultaneously. However, this hybrid task scheduling problem is rarely considered by existing works. DRL exhibits many benefits in addressing scheduling problems, but the strong dependency on problem-specific reward engineering limits its application. Additionally, most DRL-based scheduling algorithms are discrete-action DRL, restricting their capacity to effectively represent hybrid decision variables. The studied problem originates from the CMfg platform, but the proposed method holds potential for broader application. The scheduling framework and the POMDP modeling can be applied to similar problems, including hybrid, manufacturing, or computational task scheduling problems. The proposed objective HER serves as a general approach to addressing challenges associated with sparse rewards, which can be extended to diverse combinatorial optimization problems aimed at optimizing an objective. We will open-source our codes to help others to apply the method to other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助标致诗蕾采纳,获得10
1秒前
无名发布了新的文献求助10
1秒前
汉堡包应助高咪采纳,获得10
1秒前
2秒前
帆帆帆发布了新的文献求助10
2秒前
Lovely_pan完成签到,获得积分10
2秒前
粱乘风完成签到,获得积分10
3秒前
3秒前
LWJ完成签到 ,获得积分10
3秒前
3秒前
shawn发布了新的文献求助10
4秒前
瘦瘦忆南完成签到,获得积分10
4秒前
朴素的天蓝完成签到,获得积分10
4秒前
4秒前
longfang完成签到,获得积分10
5秒前
酷波er应助陌君子筱采纳,获得10
5秒前
Freja发布了新的文献求助10
5秒前
GGbong发布了新的文献求助10
6秒前
X1x1A0Q1完成签到,获得积分10
6秒前
苏苏诺诺2023完成签到,获得积分10
6秒前
巫马笑白发布了新的文献求助10
6秒前
小葱完成签到,获得积分10
7秒前
东方秦兰发布了新的文献求助10
7秒前
全圆佑的猫猫完成签到,获得积分10
7秒前
能动搬砖人关注了科研通微信公众号
8秒前
8秒前
8秒前
fmmuxiaoqiang完成签到,获得积分10
9秒前
快乐的千秋完成签到,获得积分10
9秒前
9秒前
SciGPT应助TaDLove采纳,获得10
9秒前
无名完成签到,获得积分10
10秒前
WW发布了新的文献求助10
10秒前
hwq完成签到,获得积分20
10秒前
小张同学完成签到 ,获得积分10
10秒前
11秒前
三个太阳完成签到,获得积分0
11秒前
xly完成签到,获得积分10
11秒前
南辰辰发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303915
求助须知:如何正确求助?哪些是违规求助? 2938066
关于积分的说明 8486128
捐赠科研通 2612060
什么是DOI,文献DOI怎么找? 1426478
科研通“疑难数据库(出版商)”最低求助积分说明 662641
邀请新用户注册赠送积分活动 647276