清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent Image Classification for 3D Printing in Industry 4.0

图像(数学) 3D打印 计算机科学 人工智能 业务 工程制图 工程类 机械工程
作者
Rajbala Rajbala,Kuldeep Singh Kaswan,Jagjit Singh Dhatterwal,E. Gangadevi,Balamurugan Balusamy
标识
DOI:10.1002/9781394204878.ch13
摘要

The rapid growth of 3D printing technology has revolutionized manufacturing processes, enabling the production of complex and customized objects with reduced time and cost. In the context of Industry 4.0, the integration of computational intelligence techniques in image classification for 3D printing has gained significant attention. This abstract explores the potential applications and benefits of using computational intelligence for image classification in the context of 3D printing within Industry 4.0. Image classification plays a crucial role in 3D printing, as it involves converting two-dimensional images or designs into printable three-dimensional objects. However, traditional image classification methods may struggle to accurately interpret complex designs and distinguish intricate details. This is where computational intelligence techniques, such as machine learning, neural networks, and evolutionary algorithms, can be leveraged to enhance the accuracy and efficiency of image classification for 3D printing. By employing machine learning algorithms, computational intelligence models can learn from vast datasets, enabling them to classify images with higher precision and reliability. Neural networks, in particular, offer powerful tools for image recognition and classification, allowing for the identification of intricate patterns and features necessary for successful 3D printing. Furthermore, evolutionary algorithms can be utilized to optimize the design and fabrication processes in 3D printing. These algorithms can explore a range of design parameters and identify the most efficient configurations, leading to improved print quality, reduced material waste, and enhanced overall productivity. In the context of Industry 4.0, the integration of computational intelligence-based image classification for 3D printing offers several advantages. It enables automated and intelligent decision-making processes, reducing human intervention and potential errors. Additionally, the use of these techniques contributes to the advancement of smart manufacturing systems by facilitating real-time monitoring and adaptive control of the printing process. However, challenges such as data quality, scalability, and interpretability need to be addressed when implementing computational intelligence-based image classification in 3D printing. Ensuring the availability of high-quality training data, scalability for large-scale manufacturing, and interpretability of the classification results are crucial factors for successful integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xaopng完成签到,获得积分10
34秒前
creep2020完成签到,获得积分10
52秒前
牧沛凝完成签到 ,获得积分10
1分钟前
遥感小虫发布了新的文献求助10
1分钟前
Lamis完成签到 ,获得积分10
1分钟前
青春梦完成签到 ,获得积分10
1分钟前
Leo完成签到 ,获得积分10
2分钟前
YumiPg完成签到,获得积分10
2分钟前
黙宇循光完成签到 ,获得积分10
2分钟前
相南相北完成签到 ,获得积分10
3分钟前
凶狠的盛男完成签到 ,获得积分10
3分钟前
yuehan完成签到 ,获得积分10
3分钟前
梓歆完成签到 ,获得积分10
3分钟前
闪闪的谷梦完成签到 ,获得积分10
4分钟前
这个文献你有么完成签到,获得积分10
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
研友_nEWRJ8完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
刘玲完成签到 ,获得积分10
5分钟前
jingjili完成签到,获得积分0
6分钟前
6分钟前
jingjili发布了新的文献求助10
6分钟前
拓跋雨梅完成签到 ,获得积分0
6分钟前
郭星星完成签到,获得积分10
6分钟前
个性仙人掌完成签到 ,获得积分10
7分钟前
Echoheart完成签到,获得积分10
7分钟前
咯咯咯完成签到 ,获得积分10
7分钟前
淡淡醉波wuliao完成签到 ,获得积分10
8分钟前
even完成签到 ,获得积分10
8分钟前
研友_Z119gZ完成签到 ,获得积分10
8分钟前
沙海沉戈完成签到,获得积分0
8分钟前
Shandongdaxiu完成签到 ,获得积分10
8分钟前
如意的馒头完成签到 ,获得积分10
9分钟前
kenchilie完成签到 ,获得积分10
9分钟前
Summer_Xia完成签到 ,获得积分10
11分钟前
12分钟前
小郭发布了新的文献求助20
13分钟前
不安青牛应助偷西瓜的猹采纳,获得10
13分钟前
13分钟前
小郭发布了新的文献求助10
13分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142