Intelligent Image Classification for 3D Printing in Industry 4.0

图像(数学) 3D打印 计算机科学 人工智能 业务 工程制图 工程类 机械工程
作者
Rajbala Rajbala,Kuldeep Singh Kaswan,Jagjit Singh Dhatterwal,E. Gangadevi,Balamurugan Balusamy
标识
DOI:10.1002/9781394204878.ch13
摘要

The rapid growth of 3D printing technology has revolutionized manufacturing processes, enabling the production of complex and customized objects with reduced time and cost. In the context of Industry 4.0, the integration of computational intelligence techniques in image classification for 3D printing has gained significant attention. This abstract explores the potential applications and benefits of using computational intelligence for image classification in the context of 3D printing within Industry 4.0. Image classification plays a crucial role in 3D printing, as it involves converting two-dimensional images or designs into printable three-dimensional objects. However, traditional image classification methods may struggle to accurately interpret complex designs and distinguish intricate details. This is where computational intelligence techniques, such as machine learning, neural networks, and evolutionary algorithms, can be leveraged to enhance the accuracy and efficiency of image classification for 3D printing. By employing machine learning algorithms, computational intelligence models can learn from vast datasets, enabling them to classify images with higher precision and reliability. Neural networks, in particular, offer powerful tools for image recognition and classification, allowing for the identification of intricate patterns and features necessary for successful 3D printing. Furthermore, evolutionary algorithms can be utilized to optimize the design and fabrication processes in 3D printing. These algorithms can explore a range of design parameters and identify the most efficient configurations, leading to improved print quality, reduced material waste, and enhanced overall productivity. In the context of Industry 4.0, the integration of computational intelligence-based image classification for 3D printing offers several advantages. It enables automated and intelligent decision-making processes, reducing human intervention and potential errors. Additionally, the use of these techniques contributes to the advancement of smart manufacturing systems by facilitating real-time monitoring and adaptive control of the printing process. However, challenges such as data quality, scalability, and interpretability need to be addressed when implementing computational intelligence-based image classification in 3D printing. Ensuring the availability of high-quality training data, scalability for large-scale manufacturing, and interpretability of the classification results are crucial factors for successful integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cangye发布了新的文献求助10
刚刚
Dotgene发布了新的文献求助10
刚刚
wanci应助CO2采纳,获得10
刚刚
joker发布了新的文献求助10
刚刚
SciGPT应助小超采纳,获得10
刚刚
刚刚
malubest完成签到,获得积分10
1秒前
华仔应助朴素的玫瑰采纳,获得30
1秒前
开心的饼干完成签到,获得积分10
2秒前
不会搞科研完成签到,获得积分0
2秒前
2秒前
2秒前
今年我必胖20斤完成签到,获得积分10
2秒前
2秒前
nini完成签到,获得积分10
3秒前
搜集达人应助1234采纳,获得10
4秒前
4秒前
Hwen完成签到,获得积分10
4秒前
susu完成签到,获得积分10
4秒前
英姑应助冷静飞柏采纳,获得10
5秒前
6秒前
6秒前
7秒前
Ryan发布了新的文献求助10
7秒前
8秒前
8秒前
cangye完成签到,获得积分10
8秒前
温暖霸完成签到,获得积分10
8秒前
JINX发布了新的文献求助10
9秒前
卉酱发布了新的文献求助30
9秒前
蔡万润完成签到 ,获得积分10
9秒前
完美世界应助大气千柳采纳,获得10
9秒前
9秒前
9秒前
10秒前
小叶发布了新的文献求助30
10秒前
ketaman完成签到,获得积分10
11秒前
11秒前
lxl发布了新的文献求助10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600