已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a prognostic model for cervical cancer by combination of machine learning and high-throughput sequencing

随机森林 特征选择 宫颈癌 Lasso(编程语言) 朴素贝叶斯分类器 决策树 线性判别分析 支持向量机 接收机工作特性 计算机科学 弹性网正则化 机器学习 人工智能 肿瘤科 癌症 医学 内科学 万维网
作者
Rui Shi,Linlin Chang,Liya Shi,Zhouxiang Zhang,Limin Zhang,Xiaona Li
出处
期刊:Ejso [Elsevier]
卷期号:50 (4): 108241-108241 被引量:4
标识
DOI:10.1016/j.ejso.2024.108241
摘要

Background Cervical cancer holds the highest morbidity and mortality rates among female reproductive tract tumors. However, the curative outcomes for patients with persistent, recurrent, or metastatic cervical cancer remain unsatisfactory. There is a lack of comprehensive prognostic indicators for cervical cancer. This study aims to develop a model that evaluates the prognosis of cervical cancer in combination of high-throughput sequencing and various machine learning algorithms. Methods In this study, we combined two single-cell RNA sequencing (scRNA-seq) projects and TCGA data for cervical cancer to obtain shared differentially expressed genes (DEGs). A LASSO regression and several learners were applied for signature feature selection. Six machine learning algorithms including Linear Discriminant Analysis, Naive Bayes, K Nearest Neighbors, Decision Tree, Random Forest, and eXtreme Gradient Boosting were utilized to construct a prognostic model for cervical cancer. External validation was conducted using the CGCI-HTMCP-CC dataset, and the accuracy of the model was assessed through ROC curve analysis. Results The results demonstrated the successful construction of a prognostic model based on DEGs from bulk- and scRNA-seq data. Ten genes CXCL8, DLC1, GRN, MPLKIP, PRDX1, RUNX1, SNX3, TFRC, UBE2V2, and UQCRC1 were screened by feature selection and applied for model construction. Random Forest exhibited the best performance in predicting the risk of cervical cancer. Patients in the high-risk group presented worse overall survival compared to those in the low-risk group. Conclusion Conclusively, our model based on DEGs from bulk-seq and scRNA-seq data effectively evaluates the prognosis of cervical cancer and provides valuable insights for comprehensive clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海梦岚完成签到,获得积分0
刚刚
3秒前
孙文杰完成签到 ,获得积分0
3秒前
8秒前
小蘑菇应助专一的馒头采纳,获得10
8秒前
merry6669发布了新的文献求助10
10秒前
斯文的慕蕊完成签到 ,获得积分10
10秒前
小宋爱科研完成签到 ,获得积分10
11秒前
Aan完成签到 ,获得积分10
13秒前
爆米花应助想听水星记采纳,获得10
14秒前
15秒前
17秒前
无无发布了新的文献求助10
21秒前
岂有此李完成签到,获得积分10
21秒前
小马甲应助chenyuns采纳,获得10
21秒前
12321234完成签到,获得积分10
24秒前
25秒前
搜集达人应助风趣猎豹采纳,获得10
25秒前
乐乐应助敏家采纳,获得10
25秒前
12321234发布了新的文献求助10
29秒前
30秒前
32秒前
怕黑海冬发布了新的文献求助10
32秒前
33秒前
君子兰完成签到,获得积分10
34秒前
江湖小妖完成签到,获得积分0
34秒前
852应助zm采纳,获得10
35秒前
所所应助shadow采纳,获得10
35秒前
万能图书馆应助Rita采纳,获得10
37秒前
chenyuns发布了新的文献求助10
37秒前
思源应助RC_Wang采纳,获得10
38秒前
啾啾咪咪发布了新的文献求助10
39秒前
40秒前
41秒前
weibo完成签到,获得积分10
42秒前
华仔应助zoequest采纳,获得10
43秒前
徐土土完成签到 ,获得积分10
43秒前
liw完成签到 ,获得积分10
43秒前
CodeCraft应助小鱼采纳,获得10
43秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779344
求助须知:如何正确求助?哪些是违规求助? 5647025
关于积分的说明 15451677
捐赠科研通 4910704
什么是DOI,文献DOI怎么找? 2642837
邀请新用户注册赠送积分活动 1590518
关于科研通互助平台的介绍 1544853