Development and validation of a prognostic model for cervical cancer by combination of machine learning and high-throughput sequencing

随机森林 特征选择 宫颈癌 Lasso(编程语言) 朴素贝叶斯分类器 决策树 线性判别分析 支持向量机 接收机工作特性 计算机科学 弹性网正则化 机器学习 人工智能 肿瘤科 癌症 医学 内科学 万维网
作者
Rui Shi,Linlin Chang,Liya Shi,Zhouxiang Zhang,Limin Zhang,Xiaona Li
出处
期刊:Ejso [Elsevier]
卷期号:50 (4): 108241-108241 被引量:2
标识
DOI:10.1016/j.ejso.2024.108241
摘要

Background Cervical cancer holds the highest morbidity and mortality rates among female reproductive tract tumors. However, the curative outcomes for patients with persistent, recurrent, or metastatic cervical cancer remain unsatisfactory. There is a lack of comprehensive prognostic indicators for cervical cancer. This study aims to develop a model that evaluates the prognosis of cervical cancer in combination of high-throughput sequencing and various machine learning algorithms. Methods In this study, we combined two single-cell RNA sequencing (scRNA-seq) projects and TCGA data for cervical cancer to obtain shared differentially expressed genes (DEGs). A LASSO regression and several learners were applied for signature feature selection. Six machine learning algorithms including Linear Discriminant Analysis, Naive Bayes, K Nearest Neighbors, Decision Tree, Random Forest, and eXtreme Gradient Boosting were utilized to construct a prognostic model for cervical cancer. External validation was conducted using the CGCI-HTMCP-CC dataset, and the accuracy of the model was assessed through ROC curve analysis. Results The results demonstrated the successful construction of a prognostic model based on DEGs from bulk- and scRNA-seq data. Ten genes CXCL8, DLC1, GRN, MPLKIP, PRDX1, RUNX1, SNX3, TFRC, UBE2V2, and UQCRC1 were screened by feature selection and applied for model construction. Random Forest exhibited the best performance in predicting the risk of cervical cancer. Patients in the high-risk group presented worse overall survival compared to those in the low-risk group. Conclusion Conclusively, our model based on DEGs from bulk-seq and scRNA-seq data effectively evaluates the prognosis of cervical cancer and provides valuable insights for comprehensive clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助微微采纳,获得10
2秒前
2秒前
3秒前
人间枝头发布了新的文献求助10
4秒前
星辰大海应助果冻小朋友采纳,获得10
5秒前
依米若米完成签到,获得积分10
7秒前
发发发完成签到,获得积分10
7秒前
7秒前
An.完成签到,获得积分10
8秒前
瑶嗯嗯完成签到,获得积分20
9秒前
11秒前
Dou发布了新的文献求助30
11秒前
感动的红酒完成签到,获得积分10
13秒前
15秒前
灵巧的煎饼完成签到,获得积分10
15秒前
16秒前
kk发布了新的文献求助10
16秒前
16秒前
17秒前
跳跃雨寒完成签到 ,获得积分10
17秒前
无花果应助适可而止采纳,获得20
17秒前
只爱龙虾发布了新的文献求助10
18秒前
amber完成签到,获得积分10
20秒前
20秒前
111发布了新的文献求助10
21秒前
22秒前
小马甲应助绝尘采纳,获得10
22秒前
funny发布了新的文献求助10
23秒前
打打应助风行水上采纳,获得10
23秒前
AD钙奶发布了新的文献求助10
23秒前
25秒前
小墨给TTK的求助进行了留言
25秒前
26秒前
26秒前
白桃汽水发布了新的文献求助10
28秒前
阔达白筠发布了新的文献求助10
30秒前
迟迟发布了新的文献求助10
31秒前
美好斓发布了新的文献求助20
31秒前
amber发布了新的文献求助10
32秒前
平淡夏云发布了新的文献求助10
32秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214629
求助须知:如何正确求助?哪些是违规求助? 2863260
关于积分的说明 8137795
捐赠科研通 2529453
什么是DOI,文献DOI怎么找? 1363698
科研通“疑难数据库(出版商)”最低求助积分说明 643908
邀请新用户注册赠送积分活动 616451