亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a prognostic model for cervical cancer by combination of machine learning and high-throughput sequencing

随机森林 特征选择 宫颈癌 Lasso(编程语言) 朴素贝叶斯分类器 决策树 线性判别分析 支持向量机 接收机工作特性 计算机科学 弹性网正则化 机器学习 人工智能 肿瘤科 癌症 医学 内科学 万维网
作者
Rui Shi,Linlin Chang,Liya Shi,Zhouxiang Zhang,Limin Zhang,Xiaona Li
出处
期刊:Ejso [Elsevier BV]
卷期号:50 (4): 108241-108241 被引量:2
标识
DOI:10.1016/j.ejso.2024.108241
摘要

Background Cervical cancer holds the highest morbidity and mortality rates among female reproductive tract tumors. However, the curative outcomes for patients with persistent, recurrent, or metastatic cervical cancer remain unsatisfactory. There is a lack of comprehensive prognostic indicators for cervical cancer. This study aims to develop a model that evaluates the prognosis of cervical cancer in combination of high-throughput sequencing and various machine learning algorithms. Methods In this study, we combined two single-cell RNA sequencing (scRNA-seq) projects and TCGA data for cervical cancer to obtain shared differentially expressed genes (DEGs). A LASSO regression and several learners were applied for signature feature selection. Six machine learning algorithms including Linear Discriminant Analysis, Naive Bayes, K Nearest Neighbors, Decision Tree, Random Forest, and eXtreme Gradient Boosting were utilized to construct a prognostic model for cervical cancer. External validation was conducted using the CGCI-HTMCP-CC dataset, and the accuracy of the model was assessed through ROC curve analysis. Results The results demonstrated the successful construction of a prognostic model based on DEGs from bulk- and scRNA-seq data. Ten genes CXCL8, DLC1, GRN, MPLKIP, PRDX1, RUNX1, SNX3, TFRC, UBE2V2, and UQCRC1 were screened by feature selection and applied for model construction. Random Forest exhibited the best performance in predicting the risk of cervical cancer. Patients in the high-risk group presented worse overall survival compared to those in the low-risk group. Conclusion Conclusively, our model based on DEGs from bulk-seq and scRNA-seq data effectively evaluates the prognosis of cervical cancer and provides valuable insights for comprehensive clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
丘比特应助中原第一深情采纳,获得10
11秒前
笑看水墨风光完成签到,获得积分10
16秒前
woo发布了新的文献求助10
50秒前
52秒前
57秒前
1分钟前
woo完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
胡萝卜完成签到,获得积分10
1分钟前
徐小树完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
紧张的以山完成签到,获得积分10
1分钟前
执着南琴完成签到,获得积分10
1分钟前
钢钢完成签到,获得积分10
1分钟前
VAE完成签到,获得积分10
1分钟前
博博完成签到,获得积分10
2分钟前
一一发布了新的文献求助10
2分钟前
一一发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
华仔应助一一采纳,获得10
3分钟前
xzy998应助美好颜采纳,获得10
3分钟前
4分钟前
美好颜完成签到,获得积分20
4分钟前
4分钟前
xiao金完成签到,获得积分10
4分钟前
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
fire完成签到 ,获得积分10
5分钟前
5分钟前
嗯对完成签到 ,获得积分10
5分钟前
一一发布了新的文献求助10
5分钟前
5分钟前
邓权发布了新的文献求助10
5分钟前
左左应助一一采纳,获得10
5分钟前
江姜酱先生应助qi采纳,获得10
6分钟前
邓权完成签到,获得积分10
6分钟前
星辰大海应助一一采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968469
求助须知:如何正确求助?哪些是违规求助? 3513259
关于积分的说明 11167119
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794360
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804629