Searching for Structure: Characterizing the Protein Conformational Landscape with Clustering-Based Algorithms

聚类分析 二面角 拉马钱德兰地块 最大值和最小值 球状蛋白 层次聚类 蛋白质结构 算法 计算机科学 物理 结晶学 人工智能 化学 数学 分子 数学分析 氢键 核磁共振 量子力学
作者
Amanda C. Macke,Jacob E. Stump,Maria S. Kelly,Jamie Rowley,Vageesha Herath,Sarah Mullen,Ruxandra I. Dima
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.3c01511
摘要

The identification and characterization of the main conformations from a protein population are a challenging and inherently high-dimensional problem. Here, we evaluate the performance of the Secondary sTructural Ensembles with machine LeArning (StELa) double-clustering method, which clusters protein structures based on the relationship between the φ and ψ dihedral angles in a protein backbone and the secondary structure of the protein, thus focusing on the local properties of protein structures. The classification of states as vectors composed of the clusters’ indices arising naturally from the Ramachandran plot is followed by the hierarchical clustering of the vectors to allow for the identification of the main features of the corresponding free energy landscape (FEL). We compare the performance of StELa with the established root-mean-squared-deviation (RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the φ and ψ dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪迹天涯应助kldxxb采纳,获得10
刚刚
zasideler完成签到,获得积分10
1秒前
故意的傲玉应助Anquan采纳,获得10
2秒前
inshialla完成签到 ,获得积分10
3秒前
youjiang发布了新的文献求助10
3秒前
heidi发布了新的文献求助10
3秒前
lxd完成签到,获得积分10
4秒前
4秒前
标致的蛋挞完成签到,获得积分10
4秒前
YanChengHan发布了新的文献求助10
4秒前
大模型应助wyhhh采纳,获得10
5秒前
科研通AI5应助苏苏采纳,获得10
5秒前
科研通AI5应助苏苏采纳,获得10
5秒前
6秒前
zmk发布了新的文献求助10
6秒前
逍遥呱呱发布了新的文献求助10
8秒前
所所应助D先生采纳,获得20
10秒前
10秒前
frank完成签到,获得积分10
11秒前
张学友发布了新的文献求助30
14秒前
Rex发布了新的文献求助10
14秒前
15秒前
淡淡冬瓜完成签到,获得积分10
15秒前
orixero应助heidi采纳,获得30
16秒前
18秒前
危机的酒窝完成签到,获得积分10
18秒前
19秒前
hhl完成签到,获得积分10
20秒前
ck完成签到,获得积分10
20秒前
2393843435完成签到,获得积分20
21秒前
22秒前
余姚发布了新的文献求助10
22秒前
zhouyane完成签到,获得积分10
23秒前
rosalieshi完成签到,获得积分0
24秒前
星辰大海完成签到 ,获得积分10
25秒前
WQY发布了新的文献求助10
25秒前
27秒前
buno应助求助采纳,获得10
27秒前
尘扬完成签到,获得积分10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851