Searching for Structure: Characterizing the Protein Conformational Landscape with Clustering-Based Algorithms

聚类分析 二面角 拉马钱德兰地块 最大值和最小值 球状蛋白 层次聚类 蛋白质结构 算法 计算机科学 物理 结晶学 人工智能 化学 数学 分子 数学分析 氢键 核磁共振 量子力学
作者
Amanda C. Macke,Jacob E. Stump,Maria S. Kelly,Jamie Rowley,Vageesha Herath,Sarah Mullen,Ruxandra I. Dima
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.3c01511
摘要

The identification and characterization of the main conformations from a protein population are a challenging and inherently high-dimensional problem. Here, we evaluate the performance of the Secondary sTructural Ensembles with machine LeArning (StELa) double-clustering method, which clusters protein structures based on the relationship between the φ and ψ dihedral angles in a protein backbone and the secondary structure of the protein, thus focusing on the local properties of protein structures. The classification of states as vectors composed of the clusters’ indices arising naturally from the Ramachandran plot is followed by the hierarchical clustering of the vectors to allow for the identification of the main features of the corresponding free energy landscape (FEL). We compare the performance of StELa with the established root-mean-squared-deviation (RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the φ and ψ dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
红柚完成签到,获得积分10
1秒前
豪豪完成签到,获得积分10
2秒前
一一完成签到 ,获得积分10
2秒前
wyc完成签到,获得积分10
3秒前
不想干活应助yzbbb采纳,获得10
3秒前
bkagyin应助研友_89jWGL采纳,获得10
3秒前
吴圳完成签到,获得积分20
4秒前
6秒前
哲别发布了新的文献求助10
6秒前
科目三应助lili采纳,获得10
6秒前
赘婿应助蛋蛋采纳,获得10
6秒前
nightmoonsun完成签到,获得积分10
6秒前
科研通AI5应助李君然采纳,获得10
7秒前
大个应助SIDEsss采纳,获得10
7秒前
drjim发布了新的文献求助10
7秒前
7秒前
吴圳发布了新的文献求助10
7秒前
飞翔的霸天哥应助WLWLW采纳,获得30
8秒前
Maestro_S应助jyyg采纳,获得10
8秒前
不愿透露姓名科研人完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助joruruo采纳,获得10
8秒前
nancyshine完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
liuqizong123完成签到,获得积分10
10秒前
东晓完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
科研通AI5应助kk采纳,获得10
12秒前
叶子发布了新的文献求助10
12秒前
xubee发布了新的文献求助10
12秒前
随心发布了新的文献求助10
12秒前
xiaobai完成签到,获得积分10
12秒前
13秒前
深情安青应助友好的半仙采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426