Searching for Structure: Characterizing the Protein Conformational Landscape with Clustering-Based Algorithms

聚类分析 二面角 拉马钱德兰地块 最大值和最小值 球状蛋白 层次聚类 蛋白质结构 算法 计算机科学 物理 结晶学 人工智能 化学 数学 分子 核磁共振 量子力学 氢键 数学分析
作者
Amanda C. Macke,Jacob E. Stump,Maria S. Kelly,Jamie Rowley,Vageesha Herath,Sarah Mullen,Ruxandra I. Dima
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.3c01511
摘要

The identification and characterization of the main conformations from a protein population are a challenging and inherently high-dimensional problem. Here, we evaluate the performance of the Secondary sTructural Ensembles with machine LeArning (StELa) double-clustering method, which clusters protein structures based on the relationship between the φ and ψ dihedral angles in a protein backbone and the secondary structure of the protein, thus focusing on the local properties of protein structures. The classification of states as vectors composed of the clusters’ indices arising naturally from the Ramachandran plot is followed by the hierarchical clustering of the vectors to allow for the identification of the main features of the corresponding free energy landscape (FEL). We compare the performance of StELa with the established root-mean-squared-deviation (RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the φ and ψ dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
安娜驳回了张雷应助
3秒前
完美的冷荷完成签到,获得积分10
5秒前
5秒前
6秒前
Leeny发布了新的文献求助10
8秒前
善学以致用应助XLL小绿绿采纳,获得10
8秒前
9秒前
9秒前
笑点低的碧琴完成签到,获得积分10
11秒前
12秒前
13秒前
西北完成签到,获得积分10
14秒前
小送完成签到,获得积分10
14秒前
15秒前
星光完成签到,获得积分10
16秒前
英吉利25发布了新的文献求助30
18秒前
哈哈哈发布了新的文献求助10
18秒前
顺利的毛衣完成签到,获得积分10
19秒前
20秒前
SYLH应助zz采纳,获得30
21秒前
冬不拉的红糖纸完成签到,获得积分20
21秒前
23秒前
木头完成签到 ,获得积分10
23秒前
哈哈哈完成签到,获得积分10
26秒前
小达人完成签到 ,获得积分10
27秒前
佳佳完成签到,获得积分10
27秒前
ZL完成签到 ,获得积分10
27秒前
28秒前
29秒前
罗rr完成签到 ,获得积分10
30秒前
缓慢的可乐完成签到,获得积分10
35秒前
35秒前
37秒前
笨笨师完成签到,获得积分20
37秒前
XXXX发布了新的文献求助10
38秒前
Owen应助瓦解99采纳,获得10
39秒前
依米zhang完成签到,获得积分10
39秒前
小羊完成签到 ,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388