Searching for Structure: Characterizing the Protein Conformational Landscape with Clustering-Based Algorithms

聚类分析 二面角 拉马钱德兰地块 最大值和最小值 球状蛋白 层次聚类 蛋白质结构 算法 计算机科学 物理 结晶学 人工智能 化学 数学 分子 数学分析 氢键 核磁共振 量子力学
作者
Amanda C. Macke,Jacob E. Stump,Maria S. Kelly,Jamie Rowley,Vageesha Herath,Sarah Mullen,Ruxandra I. Dima
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.3c01511
摘要

The identification and characterization of the main conformations from a protein population are a challenging and inherently high-dimensional problem. Here, we evaluate the performance of the Secondary sTructural Ensembles with machine LeArning (StELa) double-clustering method, which clusters protein structures based on the relationship between the φ and ψ dihedral angles in a protein backbone and the secondary structure of the protein, thus focusing on the local properties of protein structures. The classification of states as vectors composed of the clusters’ indices arising naturally from the Ramachandran plot is followed by the hierarchical clustering of the vectors to allow for the identification of the main features of the corresponding free energy landscape (FEL). We compare the performance of StELa with the established root-mean-squared-deviation (RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the φ and ψ dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
P88JNG完成签到,获得积分10
1秒前
彭于晏应助纷花雨采纳,获得10
2秒前
cocolu应助SunGuangkai采纳,获得10
3秒前
P88JNG发布了新的文献求助10
4秒前
4秒前
Duha完成签到,获得积分10
4秒前
卢雨生发布了新的文献求助10
5秒前
Lzt完成签到,获得积分10
5秒前
5秒前
yiyu完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
小二郎应助123采纳,获得10
8秒前
大个应助1234采纳,获得10
8秒前
8秒前
10秒前
keKEYANTONG发布了新的文献求助10
10秒前
DAGeee应助chunyangwang采纳,获得30
10秒前
善学以致用应助lvsehx采纳,获得10
10秒前
r8211发布了新的文献求助10
11秒前
12秒前
yfzhang发布了新的文献求助10
12秒前
科研通AI2S应助P88JNG采纳,获得10
12秒前
MYY发布了新的文献求助10
12秒前
liyun发布了新的文献求助10
12秒前
12秒前
chenjyuu完成签到,获得积分10
13秒前
shaco发布了新的文献求助10
13秒前
充电宝应助俭朴思卉采纳,获得10
13秒前
14秒前
Yan完成签到,获得积分10
14秒前
帅气面包发布了新的文献求助10
15秒前
水水发布了新的文献求助10
16秒前
16秒前
鱼咬羊发布了新的文献求助30
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309253
求助须知:如何正确求助?哪些是违规求助? 2942586
关于积分的说明 8509788
捐赠科研通 2617736
什么是DOI,文献DOI怎么找? 1430320
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274