Software Vulnerability Detection with GPT and In-Context Learning

计算机科学 代码段 背景(考古学) 脆弱性(计算) 源代码 脆弱性评估 人工智能 机器学习 编码(集合论) 软件 自然语言处理 情报检索 计算机安全 集合(抽象数据类型) 程序设计语言 心理弹性 古生物学 心理学 生物 心理治疗师
作者
Zhihong Liu,Qing Liao,Wenchao Gu,Cuiyun Gao
标识
DOI:10.1109/dsc59305.2023.00041
摘要

Code vulnerability detection is a software security analysis technique that focuses on recognizing and resolving possible code vulnerabilities and weaknesses. Its primary objective is to mitigate the chances of malicious attacks and system failures. Vulnerabilities encompass mistakes, defects, or insecure programming methodologies found within the code, which can lead to security risks, service denials, data leaks, and various other concerns. Previous research has predominantly focused on deep learning models such as VulDeePecker, Russell, and SySeVR. With the advent of large language models, impressive advancements have been made in various domains, including natural language generation, text classification, and sentiment analysis. However, there is currently no effective method for utilizing large language models in vulnerability detection. Therefore, this study explores and validates the application of such models for code vulnerability detection. In this paper we present a context-based learning approach to enhance the capability of code vulnerability detection named VUL-GPT. Our method combines code retrieval and code analysis, leveraging in-context learning to improve the performance of the GPT model in vulnerability detection. Specifically, we use GPT to generate analysis content for the test code and employ code retrieval methods such as BM-25 and TF-IDF to retrieve the most similar code snippet and its vulnerability information from the training set. Subsequently, we input them along with the test code and its analysis into the GPT model, leveraging the contextual learning ability of the large language model for vulnerability detection. Our experiments demonstrate that combining with code retrieval and code analysis, the GPT models can detect code vulnerability detection more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活力的微笑完成签到,获得积分20
1秒前
浮游应助111采纳,获得10
1秒前
1秒前
1111完成签到,获得积分10
1秒前
yulong发布了新的文献求助10
2秒前
偶哩哇呐发布了新的文献求助10
2秒前
小朱完成签到,获得积分10
2秒前
科研通AI6应助一鸣采纳,获得10
3秒前
肖礼成完成签到,获得积分10
4秒前
5秒前
852应助香蕉猴子啦啦啦采纳,获得10
5秒前
5秒前
hhhhhhan616完成签到,获得积分10
5秒前
超级Huan完成签到,获得积分10
5秒前
菜菜将完成签到 ,获得积分10
6秒前
7秒前
机智苗应助尊敬乌龟采纳,获得10
7秒前
张雯悦发布了新的文献求助10
7秒前
Ashe完成签到,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
orixero应助LLLLLL采纳,获得10
10秒前
zc发布了新的文献求助10
11秒前
熊猫王666完成签到,获得积分10
12秒前
烟花应助贺兰采纳,获得10
12秒前
简单勒关注了科研通微信公众号
12秒前
孙超发布了新的文献求助10
13秒前
偶哩哇呐完成签到,获得积分20
13秒前
13秒前
脑洞疼应助blawxx采纳,获得10
14秒前
贪玩完成签到 ,获得积分10
14秒前
酷波er应助kkk采纳,获得10
14秒前
14秒前
贪玩绮南发布了新的文献求助10
15秒前
15秒前
一鸣完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5164939
求助须知:如何正确求助?哪些是违规求助? 4357495
关于积分的说明 13567080
捐赠科研通 4203223
什么是DOI,文献DOI怎么找? 2305183
邀请新用户注册赠送积分活动 1305071
关于科研通互助平台的介绍 1251474