Software Vulnerability Detection with GPT and In-Context Learning

计算机科学 代码段 背景(考古学) 脆弱性(计算) 源代码 脆弱性评估 人工智能 机器学习 编码(集合论) 软件 自然语言处理 情报检索 计算机安全 集合(抽象数据类型) 程序设计语言 心理弹性 古生物学 心理学 生物 心理治疗师
作者
Zhihong Liu,Qing Liao,Wenchao Gu,Cuiyun Gao
标识
DOI:10.1109/dsc59305.2023.00041
摘要

Code vulnerability detection is a software security analysis technique that focuses on recognizing and resolving possible code vulnerabilities and weaknesses. Its primary objective is to mitigate the chances of malicious attacks and system failures. Vulnerabilities encompass mistakes, defects, or insecure programming methodologies found within the code, which can lead to security risks, service denials, data leaks, and various other concerns. Previous research has predominantly focused on deep learning models such as VulDeePecker, Russell, and SySeVR. With the advent of large language models, impressive advancements have been made in various domains, including natural language generation, text classification, and sentiment analysis. However, there is currently no effective method for utilizing large language models in vulnerability detection. Therefore, this study explores and validates the application of such models for code vulnerability detection. In this paper we present a context-based learning approach to enhance the capability of code vulnerability detection named VUL-GPT. Our method combines code retrieval and code analysis, leveraging in-context learning to improve the performance of the GPT model in vulnerability detection. Specifically, we use GPT to generate analysis content for the test code and employ code retrieval methods such as BM-25 and TF-IDF to retrieve the most similar code snippet and its vulnerability information from the training set. Subsequently, we input them along with the test code and its analysis into the GPT model, leveraging the contextual learning ability of the large language model for vulnerability detection. Our experiments demonstrate that combining with code retrieval and code analysis, the GPT models can detect code vulnerability detection more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bio应助科研通管家采纳,获得150
刚刚
pluto应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
桐桐应助糖异生采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得150
1秒前
情怀应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
焜少完成签到,获得积分10
2秒前
AAAcaiwenji发布了新的文献求助10
4秒前
可爱的函函应助hui采纳,获得10
5秒前
qq发布了新的文献求助10
5秒前
可爱的函函应助lh采纳,获得10
6秒前
大方的羊青完成签到,获得积分10
6秒前
renhuizhi发布了新的文献求助30
6秒前
丁浩添完成签到,获得积分20
6秒前
顾矜应助julygiao采纳,获得20
7秒前
八月完成签到,获得积分10
8秒前
Yugugu应助lin采纳,获得10
8秒前
还单身的香菇完成签到,获得积分10
8秒前
苗条桐发布了新的文献求助10
8秒前
12秒前
CHANG完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911582
求助须知:如何正确求助?哪些是违规求助? 4187043
关于积分的说明 13002331
捐赠科研通 3954873
什么是DOI,文献DOI怎么找? 2168482
邀请新用户注册赠送积分活动 1186950
关于科研通互助平台的介绍 1094256