亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Software Vulnerability Detection with GPT and In-Context Learning

计算机科学 代码段 背景(考古学) 脆弱性(计算) 源代码 脆弱性评估 人工智能 机器学习 编码(集合论) 软件 自然语言处理 情报检索 计算机安全 集合(抽象数据类型) 程序设计语言 心理学 古生物学 心理弹性 心理治疗师 生物
作者
Zhihong Liu,Qing Liao,Wenchao Gu,Cuiyun Gao
标识
DOI:10.1109/dsc59305.2023.00041
摘要

Code vulnerability detection is a software security analysis technique that focuses on recognizing and resolving possible code vulnerabilities and weaknesses. Its primary objective is to mitigate the chances of malicious attacks and system failures. Vulnerabilities encompass mistakes, defects, or insecure programming methodologies found within the code, which can lead to security risks, service denials, data leaks, and various other concerns. Previous research has predominantly focused on deep learning models such as VulDeePecker, Russell, and SySeVR. With the advent of large language models, impressive advancements have been made in various domains, including natural language generation, text classification, and sentiment analysis. However, there is currently no effective method for utilizing large language models in vulnerability detection. Therefore, this study explores and validates the application of such models for code vulnerability detection. In this paper we present a context-based learning approach to enhance the capability of code vulnerability detection named VUL-GPT. Our method combines code retrieval and code analysis, leveraging in-context learning to improve the performance of the GPT model in vulnerability detection. Specifically, we use GPT to generate analysis content for the test code and employ code retrieval methods such as BM-25 and TF-IDF to retrieve the most similar code snippet and its vulnerability information from the training set. Subsequently, we input them along with the test code and its analysis into the GPT model, leveraging the contextual learning ability of the large language model for vulnerability detection. Our experiments demonstrate that combining with code retrieval and code analysis, the GPT models can detect code vulnerability detection more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nickel完成签到,获得积分10
8秒前
22秒前
EliotFang发布了新的文献求助10
27秒前
沉沉完成签到 ,获得积分0
29秒前
51秒前
56秒前
Frank发布了新的文献求助10
57秒前
oleskarabach发布了新的文献求助10
1分钟前
EliotFang完成签到,获得积分10
1分钟前
fsznc完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
开心完成签到 ,获得积分10
3分钟前
3分钟前
顾矜应助zsc采纳,获得10
3分钟前
榆果子发布了新的文献求助10
3分钟前
榆果子完成签到,获得积分10
3分钟前
我是笨蛋完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
荆棘鸟发布了新的文献求助10
4分钟前
正传阿飞完成签到,获得积分10
5分钟前
隐形曼青应助荆棘鸟采纳,获得10
5分钟前
荆棘鸟完成签到,获得积分10
5分钟前
5分钟前
Frank完成签到,获得积分10
5分钟前
鲤鱼听荷完成签到 ,获得积分10
6分钟前
6分钟前
tabblk发布了新的文献求助10
6分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
QCB完成签到 ,获得积分10
7分钟前
陈杰发布了新的文献求助10
7分钟前
宋艳芳完成签到,获得积分10
8分钟前
陈杰完成签到,获得积分10
8分钟前
传奇3应助蒙豆儿采纳,获得10
9分钟前
9分钟前
蒙豆儿发布了新的文献求助10
9分钟前
汉堡包应助科研通管家采纳,获得10
9分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582317
求助须知:如何正确求助?哪些是违规求助? 4000095
关于积分的说明 12382127
捐赠科研通 3674975
什么是DOI,文献DOI怎么找? 2025631
邀请新用户注册赠送积分活动 1059307
科研通“疑难数据库(出版商)”最低求助积分说明 945946