清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Software Vulnerability Detection with GPT and In-Context Learning

计算机科学 代码段 背景(考古学) 脆弱性(计算) 源代码 脆弱性评估 人工智能 机器学习 编码(集合论) 软件 自然语言处理 情报检索 计算机安全 集合(抽象数据类型) 程序设计语言 心理学 古生物学 心理弹性 心理治疗师 生物
作者
Zhihong Liu,Qing Liao,Wenchao Gu,Cuiyun Gao
标识
DOI:10.1109/dsc59305.2023.00041
摘要

Code vulnerability detection is a software security analysis technique that focuses on recognizing and resolving possible code vulnerabilities and weaknesses. Its primary objective is to mitigate the chances of malicious attacks and system failures. Vulnerabilities encompass mistakes, defects, or insecure programming methodologies found within the code, which can lead to security risks, service denials, data leaks, and various other concerns. Previous research has predominantly focused on deep learning models such as VulDeePecker, Russell, and SySeVR. With the advent of large language models, impressive advancements have been made in various domains, including natural language generation, text classification, and sentiment analysis. However, there is currently no effective method for utilizing large language models in vulnerability detection. Therefore, this study explores and validates the application of such models for code vulnerability detection. In this paper we present a context-based learning approach to enhance the capability of code vulnerability detection named VUL-GPT. Our method combines code retrieval and code analysis, leveraging in-context learning to improve the performance of the GPT model in vulnerability detection. Specifically, we use GPT to generate analysis content for the test code and employ code retrieval methods such as BM-25 and TF-IDF to retrieve the most similar code snippet and its vulnerability information from the training set. Subsequently, we input them along with the test code and its analysis into the GPT model, leveraging the contextual learning ability of the large language model for vulnerability detection. Our experiments demonstrate that combining with code retrieval and code analysis, the GPT models can detect code vulnerability detection more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
4秒前
42秒前
量子星尘发布了新的文献求助10
49秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
冷傲半邪完成签到,获得积分10
1分钟前
Lny发布了新的文献求助10
1分钟前
1分钟前
wuke完成签到,获得积分20
1分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
xiaozou55完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
烟景发布了新的文献求助10
3分钟前
张哈完成签到 ,获得积分10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
朴素海亦完成签到 ,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小梦完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
宇文非笑完成签到 ,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
TianYou给TianYou的求助进行了留言
7分钟前
量子星尘发布了新的文献求助10
7分钟前
宁静完成签到 ,获得积分10
7分钟前
临风怳兮浩歌应助kk采纳,获得10
8分钟前
8分钟前
kk完成签到,获得积分10
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128726
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069