Software Vulnerability Detection with GPT and In-Context Learning

计算机科学 代码段 背景(考古学) 脆弱性(计算) 源代码 脆弱性评估 人工智能 机器学习 编码(集合论) 软件 自然语言处理 情报检索 计算机安全 集合(抽象数据类型) 程序设计语言 心理学 古生物学 心理弹性 心理治疗师 生物
作者
Zhihong Liu,Qing Liao,Wenchao Gu,Cuiyun Gao
标识
DOI:10.1109/dsc59305.2023.00041
摘要

Code vulnerability detection is a software security analysis technique that focuses on recognizing and resolving possible code vulnerabilities and weaknesses. Its primary objective is to mitigate the chances of malicious attacks and system failures. Vulnerabilities encompass mistakes, defects, or insecure programming methodologies found within the code, which can lead to security risks, service denials, data leaks, and various other concerns. Previous research has predominantly focused on deep learning models such as VulDeePecker, Russell, and SySeVR. With the advent of large language models, impressive advancements have been made in various domains, including natural language generation, text classification, and sentiment analysis. However, there is currently no effective method for utilizing large language models in vulnerability detection. Therefore, this study explores and validates the application of such models for code vulnerability detection. In this paper we present a context-based learning approach to enhance the capability of code vulnerability detection named VUL-GPT. Our method combines code retrieval and code analysis, leveraging in-context learning to improve the performance of the GPT model in vulnerability detection. Specifically, we use GPT to generate analysis content for the test code and employ code retrieval methods such as BM-25 and TF-IDF to retrieve the most similar code snippet and its vulnerability information from the training set. Subsequently, we input them along with the test code and its analysis into the GPT model, leveraging the contextual learning ability of the large language model for vulnerability detection. Our experiments demonstrate that combining with code retrieval and code analysis, the GPT models can detect code vulnerability detection more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过几天完成签到,获得积分20
刚刚
所所应助小圆不头大采纳,获得10
2秒前
爱吃香菜完成签到,获得积分10
2秒前
2秒前
YYH发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
shisui发布了新的文献求助30
4秒前
Foodie642应助孤独的万言采纳,获得10
5秒前
qingniujushi发布了新的文献求助10
5秒前
5秒前
开放鹤轩发布了新的文献求助10
7秒前
7秒前
lcc完成签到,获得积分10
7秒前
0406完成签到,获得积分10
7秒前
8秒前
黑粉头头发布了新的文献求助10
8秒前
SciGPT应助乔佳怡采纳,获得10
8秒前
warmth发布了新的文献求助10
8秒前
俞藏今发布了新的文献求助10
8秒前
钱小豪发布了新的文献求助10
9秒前
谭访冬发布了新的文献求助10
10秒前
11秒前
晓峰发布了新的文献求助10
11秒前
LL发布了新的文献求助10
12秒前
小薇完成签到,获得积分10
12秒前
14秒前
15秒前
16秒前
16秒前
勤奋的热狗完成签到 ,获得积分10
16秒前
孤灯剑客完成签到,获得积分10
16秒前
2385697574完成签到,获得积分10
17秒前
18秒前
脑洞疼应助爹爹采纳,获得10
18秒前
shisui完成签到,获得积分10
19秒前
汉堡包应助LL采纳,获得10
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687