Dynamic Feature-fused Localization with Smartphones Exploiting 5G NR SSB and Wi-Fi for Indoor Environments

计算机科学 人工智能 特征(语言学) 加权 卡尔曼滤波器 离群值 假警报 滤波器(信号处理) 实时计算 计算机视觉 语言学 医学 放射科 哲学
作者
Haoxiao Yang,Liang Chen,Han Liu,Guanwen Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:1
标识
DOI:10.1109/tim.2024.3352695
摘要

With the rapid development and wide deployment of fifth-generation (5G) and Wi-Fi technologies, indoor positioning has entered a new era. Particularly, the salient properties of 5G New Radio (NR), such as the synchronization signal block (SSB) with multiple beams, demonstrate superiority in utilizing multivariate fingerprints for positioning. However, existing research has rarely explored the fusion of 5G NR SSB and Wi-Fi with dynamic features for positioning in complex indoor environments. To address this gap, this study proposes a dynamic features-fused localization (DFF-Loc) framework that leverages the complementary advantages of 5G NR SSB and Wi-Fi to achieve accurate, reliable, robust indoor positioning. DFF-Loc consists of four modules: a dynamic signal filter that uses the extended Kalman filter, prepositioning using a lightweight backpropagation neural network, outlier detection through the local outlier factor, and dynamic weighting fusion based on improved particle filter using signal features. Field experiments are conducted with two of smartphones in three typical indoor scenarios to evaluate the performance of DFF-Loc. Compared with 5G-based and Wi-Fi-based methods, DFF-Loc exhibits an average accuracy improvement of 28.23% and 20.38%, respectively. DFF-Loc outperforms classical machine learning algorithms in all tests, with average accuracies of 1.87, 3.97, and 1.23 m. Dynamic experiments reveal the same. The cumulative error probability diagrams demonstrate DFF-Loc’s excellent convergence ability, with the majority of points falling within acceptable error ranges. This solution can serve as a valuable reference for navigation with consumer-grade smartphones exploiting 5G NR SSB and Wi-Fi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小星云发布了新的文献求助10
1秒前
冷傲机器猫完成签到,获得积分10
1秒前
Marvin42完成签到,获得积分10
2秒前
2秒前
独钓寒江雪完成签到 ,获得积分10
2秒前
奶龙淦贝利亚完成签到,获得积分10
3秒前
李健的小迷弟应助阳仔采纳,获得10
3秒前
星星月完成签到 ,获得积分10
3秒前
4秒前
4秒前
海中有月发布了新的文献求助10
5秒前
7秒前
7秒前
brazenness完成签到,获得积分10
7秒前
汐流年完成签到,获得积分10
8秒前
9秒前
yulinn发布了新的文献求助50
9秒前
10秒前
10秒前
11秒前
12秒前
小马甲应助孙扬采纳,获得10
12秒前
大模型应助江峰采纳,获得10
12秒前
笨笨凡松发布了新的文献求助10
13秒前
sby19完成签到 ,获得积分10
14秒前
15秒前
六六发布了新的文献求助10
15秒前
16秒前
CHEN发布了新的文献求助10
17秒前
阳仔发布了新的文献求助10
17秒前
炙热冰蓝发布了新的文献求助10
18秒前
20秒前
20秒前
nbzhan发布了新的文献求助10
21秒前
21秒前
慕青应助yingyc采纳,获得10
21秒前
1111发布了新的文献求助10
21秒前
22秒前
大模型应助小星云采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679