PEAE-GNN: Phishing Detection on Ethereum via Augmentation Ego-Graph Based on Graph Neural Network

网络钓鱼 计算机科学 可扩展性 图形 数据库事务 人工智能 利用 机器学习 理论计算机科学 计算机安全 万维网 互联网 数据库
作者
Hexiang Huang,Xuan Zhang,Jishu Wang,Chen Gao,Xue Bin Li,Rui Zhu,Qiuying Ma
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4326-4339 被引量:3
标识
DOI:10.1109/tcss.2023.3349071
摘要

Recent years, the successful application of blockchain in cryptocurrency has attracted a lot of attention, but it has also led to a rapid growth of illegal and criminal activities. Phishing scams have become the most serious type of crime in Ethereum. Some existing methods for phishing scams detection have limitations, such as high complexity, poor scalability, and high latency. In this article, we propose a novel framework named phishing detection on Ethereum via augmentation ego-graph based on graph neural network (PEAE-GNN). First, we obtain account labels and transaction records from authoritative websites and extract ego-graphs centered on labeled accounts. Then we propose a feature augmentation strategy based on structure features, transaction features and interaction intensity to augment the node features, so that these features of each ego-graph can be learned. Finally, we present a new graph-level representation, sorting the updated node features in descending order and then taking the mean value of the top n to obtain the graph representation, which can retain key information and reduce the introduction of noise. Extensive experimental results show that PEAE-GNN achieves the best performance on phishing detection tasks. At the same time, our framework has the advantages of lower complexity, better scalability, and higher efficiency, which detects phishing accounts at early stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助代萌萌采纳,获得10
刚刚
刚刚
捉迷藏应助tengli采纳,获得10
刚刚
shirleeyeahe发布了新的文献求助10
刚刚
kunny完成签到,获得积分10
刚刚
刚刚
闻声完成签到,获得积分10
刚刚
zqfxc发布了新的文献求助10
2秒前
zhuxl完成签到,获得积分10
3秒前
威康宇宙完成签到,获得积分10
3秒前
3秒前
4秒前
cchen0902发布了新的文献求助10
4秒前
在水一方应助cmh采纳,获得10
4秒前
一年能吃800篇sci吗完成签到,获得积分10
4秒前
慕青应助ww采纳,获得10
4秒前
4秒前
4秒前
rosexu完成签到,获得积分10
5秒前
jhlz5879完成签到,获得积分10
5秒前
百宝发布了新的文献求助10
5秒前
Ye发布了新的文献求助10
5秒前
lalala应助搞怪网络采纳,获得20
6秒前
FashionBoy应助渝州人采纳,获得10
6秒前
6秒前
7秒前
7秒前
科研通AI5应助xy采纳,获得10
7秒前
曼冬发布了新的文献求助10
7秒前
上官若男应助sjxx采纳,获得10
7秒前
8秒前
守墓人完成签到 ,获得积分10
8秒前
榴莲完成签到,获得积分10
8秒前
对照完成签到 ,获得积分10
8秒前
9秒前
9秒前
初闻完成签到,获得积分10
10秒前
惠惠发布了新的文献求助10
10秒前
慕青应助a1oft采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794