PEAE-GNN: Phishing Detection on Ethereum via Augmentation Ego-Graph Based on Graph Neural Network

网络钓鱼 计算机科学 可扩展性 图形 数据库事务 人工智能 利用 机器学习 理论计算机科学 计算机安全 万维网 互联网 数据库
作者
Hexiang Huang,Xuan Zhang,Jishu Wang,Chen Gao,Xue Bin Li,Rui Zhu,Qiuying Ma
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4326-4339 被引量:3
标识
DOI:10.1109/tcss.2023.3349071
摘要

Recent years, the successful application of blockchain in cryptocurrency has attracted a lot of attention, but it has also led to a rapid growth of illegal and criminal activities. Phishing scams have become the most serious type of crime in Ethereum. Some existing methods for phishing scams detection have limitations, such as high complexity, poor scalability, and high latency. In this article, we propose a novel framework named phishing detection on Ethereum via augmentation ego-graph based on graph neural network (PEAE-GNN). First, we obtain account labels and transaction records from authoritative websites and extract ego-graphs centered on labeled accounts. Then we propose a feature augmentation strategy based on structure features, transaction features and interaction intensity to augment the node features, so that these features of each ego-graph can be learned. Finally, we present a new graph-level representation, sorting the updated node features in descending order and then taking the mean value of the top n to obtain the graph representation, which can retain key information and reduce the introduction of noise. Extensive experimental results show that PEAE-GNN achieves the best performance on phishing detection tasks. At the same time, our framework has the advantages of lower complexity, better scalability, and higher efficiency, which detects phishing accounts at early stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细腻驳完成签到,获得积分10
刚刚
刚刚
刚刚
jpc完成签到,获得积分10
2秒前
2秒前
科研牛马完成签到,获得积分10
2秒前
3秒前
稚生w完成签到,获得积分10
4秒前
jayto发布了新的文献求助10
4秒前
silentdoubao发布了新的文献求助10
4秒前
4秒前
刘学完成签到,获得积分10
5秒前
5秒前
6秒前
Jared应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
jyy应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
yun完成签到,获得积分10
12秒前
zxx完成签到 ,获得积分0
13秒前
13秒前
15秒前
15秒前
16秒前
16秒前
李爱国应助舒适忆文采纳,获得10
16秒前
高贵绿真完成签到,获得积分10
16秒前
研友_VZG7GZ应助愤怒的梦曼采纳,获得10
17秒前
肉肉完成签到 ,获得积分10
17秒前
脑洞疼应助懿懿采纳,获得10
17秒前
wsy完成签到 ,获得积分10
18秒前
19秒前
19秒前
zhangyu完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226