Toward a Novel Methodology in Economic Experiments: Simulation of the Ultimatum Game with Large Language Models

最后通牒赛局 计算机科学 博弈论 数理经济学 经济
作者
Ayato Kitadai,Yudai Tsurusaki,Yusuke Fukasawa,Nariaki Nishino
标识
DOI:10.1109/bigdata59044.2023.10386678
摘要

This study explores the optimal settings for a prevalent simulation in which agents powered by large language models (LLMs) make decisions without predetermined actions as a substitute for economic experiments. Economic experiments are essential methods in economics where the behaviors of participants are observed under controlled conditions to test hypotheses and theories, involving significant time, effort, and cost. If a simulation can supplant economic experiments, researchers can overcome these limitations by utilizing it. We focused on three essential factors for applying the simulation using LLMs to economic experiments and conducted simulations for both the proposer and responder sides of the one-shot ultimatum game in various settings of the three factors. The sensitivity analysis revealed that, on the proposer side, there was a setting that produced results similar to actual human-centered experiments. However, on the responder side, none of the simulation setups yielded results consistent with real-world experimental data. These findings suggest both the potential and limitations of the novel simulation with LLMs as a substitute for economic experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cnty伟伟完成签到 ,获得积分20
3秒前
3秒前
今后应助哼哼哈嘿采纳,获得10
4秒前
lin发布了新的文献求助10
6秒前
8秒前
Liu完成签到,获得积分20
8秒前
abobo完成签到 ,获得积分10
8秒前
9秒前
11秒前
ysl完成签到,获得积分10
13秒前
狂野的青雪完成签到 ,获得积分10
13秒前
13秒前
哼哼哈嘿发布了新的文献求助10
17秒前
17秒前
无情芝麻发布了新的文献求助10
17秒前
18秒前
Reese完成签到 ,获得积分10
18秒前
wfjsnd发布了新的文献求助50
18秒前
CCLD完成签到,获得积分10
18秒前
20秒前
鲜橙完成签到 ,获得积分10
20秒前
桐桐应助Wshtiiiii采纳,获得10
22秒前
siijjfjjf发布了新的文献求助10
23秒前
23秒前
天天快乐应助科研的POWER采纳,获得10
24秒前
在水一方应助持卿采纳,获得30
24秒前
25秒前
科研通AI5应助潇洒迎夏采纳,获得10
26秒前
27秒前
常常发布了新的文献求助10
27秒前
28秒前
29秒前
FashionBoy应助ZYH采纳,获得10
29秒前
31秒前
有趣的银发布了新的文献求助10
32秒前
32秒前
siijjfjjf完成签到 ,获得积分10
33秒前
33秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727927
求助须知:如何正确求助?哪些是违规求助? 3272991
关于积分的说明 9979382
捐赠科研通 2988370
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817