PE-Transformer: Path enhanced transformer for improving underwater object detection

计算机科学 水下 目标检测 变压器 人工智能 计算机视觉 模式识别(心理学) 实时计算 电压 工程类 海洋学 电气工程 地质学
作者
Jinxiong Gao,Yonghui Zhang,Geng Xu,Hao Tang,Uzair Aslam Bhatti
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123253-123253 被引量:23
标识
DOI:10.1016/j.eswa.2024.123253
摘要

Traditional object detection methods cannot effectively identify underwater objects with complex backgrounds, and it is difficult to fully obtain the details of small-scale underwater targets, resulting in poor detection performance. We propose a path-augmented Transformer detection framework to address these limitations to explore the semantic details of small-scale underwater targets in complex environments. On one hand, an embedded local path detection information scheme is devised to facilitate the interaction between high-level and low-level features, thereby enhancing the semantic representation of distinctive features of small-scale underwater targets. Rich dependency relationships are established between the acquired high-level and low-level features within the CSWin-Transformer framework, thus fortifying the semantic representation during the encoding phase. Furthermore, a individualized loss function is employed to optimize and fine-tune features at various hierarchical levels. On the other hand, a detection module with flexible and adaptive point representation that is different from conventional square detection methods is designed. This module covers the underwater target from any direction, and the salient point samples in classification localization and feature selection between points realize the feature selection improves the detection accuracy of underwater objects simultaneously. We designed a new weighted loss function to encourage the network to converge better. Experimental results on open-source underwater and remote sensing images of UTDAC, RUOD, and ADios show that the proposed method outperforms other underwater object detection methods in terms of precision(P), recall(R), comprehensive evaluation index of F1-score and FPS(frames per second).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适不平完成签到,获得积分10
刚刚
丘比特应助miao采纳,获得10
1秒前
xuxieyu发布了新的文献求助10
1秒前
香蕉觅云应助chen.采纳,获得10
2秒前
yuanqi发布了新的文献求助10
2秒前
sound完成签到,获得积分10
2秒前
爆米花应助LFJ采纳,获得10
2秒前
zsws发布了新的文献求助10
2秒前
拾壹完成签到,获得积分10
3秒前
腾桑完成签到,获得积分20
5秒前
科研通AI5应助灰灰采纳,获得30
6秒前
呆萌松鼠完成签到,获得积分10
6秒前
受伤灵薇完成签到,获得积分10
6秒前
suibianba应助DustRain采纳,获得10
7秒前
8秒前
9秒前
Kidmuse完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
贾霆发布了新的文献求助10
13秒前
Owen应助安静海菡采纳,获得10
14秒前
chen.发布了新的文献求助10
14秒前
14秒前
lst完成签到,获得积分10
15秒前
祖诗云应助zaddy0905采纳,获得30
15秒前
16秒前
isak发布了新的文献求助10
17秒前
HD完成签到,获得积分10
17秒前
DustRain完成签到,获得积分20
18秒前
18秒前
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
PurityL发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
21秒前
牛不可完成签到,获得积分10
21秒前
FashionBoy应助科研通管家采纳,获得30
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474