A Novel Hybrid Model for Predictive Analysis of Myocardial Infarction using Advanced Machine Learning Techniques

计算机科学 心肌梗塞 机器学习 人工智能 内科学 医学
作者
Abhishek Shrivastava,Santosh Kumar,N. Srinivas Naik,Tejasv Bhatt
标识
DOI:10.1109/ocit59427.2023.10430780
摘要

Cardiovascular disease (CVD) remains a leading cause of mortality, posing challenges for early detection and prediction. The recent survey of interest among researchers focuses on advanced machine-learning (AML) models due to their impressive precision, accurate classification, and predictive capabilities. This area has particularly significant implications within medical cardiology, as it aims to promptly identify CVD. This study introduces an effective and precise system for detecting Myocardial Infarction (MI). The system leverages three distinct feature selection approaches-filter methods, wrapper methods, and embedded methods—in conjunction with eight ML algorithms: logistic regression (LR), k-nearest neighbors(KNN) classifier, support vector classifier (SVC), decision tree (DT), random forest (RF), gradient boosting (GB), ada boost (AB) classifier, and xgb classifier based on the performance compare all. Incorporating these methods enhances the classification model's performance while reducing computational complexity. The proposed model is evaluated using a standardized dataset, demonstrating superior predictive capabilities in terms of accuracy, sensitivity, precision, f1-score, auc, and specificity. This novel approach outperforms existing research in this domain, further underscoring its potential in advancing MI prediction and diagnosis for elder and newborn babies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123sly发布了新的文献求助30
1秒前
Akim应助QinQin采纳,获得10
2秒前
Herman完成签到 ,获得积分10
2秒前
Twonej给呢呢的求助进行了留言
2秒前
xing完成签到,获得积分10
3秒前
3秒前
CipherSage应助李卓航采纳,获得10
3秒前
3秒前
M旭旭完成签到,获得积分10
4秒前
科研通AI6应助于富强采纳,获得10
5秒前
Ganann完成签到 ,获得积分10
6秒前
vv完成签到 ,获得积分10
6秒前
有趣的银发布了新的文献求助10
6秒前
7秒前
8秒前
上官若男应助yun采纳,获得40
9秒前
12秒前
田様应助Cyuan采纳,获得10
12秒前
12秒前
123sly完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
传奇3应助QinQin采纳,获得10
16秒前
严天飞发布了新的文献求助10
17秒前
Nora发布了新的文献求助10
17秒前
三三完成签到,获得积分10
17秒前
youyouyou发布了新的文献求助10
18秒前
orangel完成签到,获得积分10
20秒前
李卓航发布了新的文献求助10
21秒前
21秒前
22秒前
会会完成签到 ,获得积分10
22秒前
22秒前
ashin17完成签到,获得积分10
23秒前
在水一方应助现代觅珍采纳,获得10
23秒前
asdfzxcv应助youyouyou采纳,获得10
24秒前
冷静冷风发布了新的文献求助10
24秒前
陈研生发布了新的文献求助10
24秒前
彭于晏应助猪猪hero采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716