重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Graph-Based Approach to Mitigate Drug-Drug Interactions and Optimize Therapeutic Regimens

药品 计算机科学 图形 药理学 医学 理论计算机科学
作者
Marios Spanakis,Eleftheria Tzamali,Georgios Tzedakis,Emmanouil G. Spanakis,Aristides Tsatsakis,Vangelis Sakkalis
标识
DOI:10.1109/bibe60311.2023.00041
摘要

Drug-drug interactions (DDIs) pose a significant issue in modern healthcare, potentially compromising treatment efficacy and patient safety. DDIs arise when significant alterations occur in the pharmacological action of a drug due to its co-administration with another drug, leading to potential adverse drug reactions (ADRs), toxicity or diminished therapeutic efficacy. Apart from the obvious cases of drug combinations that should be avoided, there are instances where risk-benefit analysis may allow co-administration. Hence, DDIs may represent clinically significant cases depending on the clinical outcome, time point of administration, etc. The issue is especially critical in cases of patients with multimorbidity and complex therapeutic regimens with different time points in drug administrations. This work employs a graph-based approach aimed at optimizing therapeutic regiments while considering the minimization of DDIs potential. In this approach each drug is represented as a node, and edges represent the clinical significance of DDIs. We aim to identify sets of drugs that either have no DDIs or exhibit minor to moderate clinical significance (referred to as Maximal Independent Sets), indicating that they can be taken together. In practice, we solved the complementary problem, which is finding Maximal Cliques. Both problems are NP-hard, but for small graphs, they can be solved exactly. From all the cliques we identify, those selected to be a part of each proposed therapeutic regimen must consist of nodes that appear only once. This problem is once again reduced to clique finding. The above approach is demonstrated using two clinical scenarios involving two patients who are experiencing polypharmacy and are at risk for ADRs due to potential DDIs of varying clinical significance. By applying our approach, the therapeutic schemes are optimized towards minimizing the risk of ADRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑壳疼发布了新的文献求助10
1秒前
嗝嗝完成签到,获得积分10
1秒前
一地狗粮完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
清风发布了新的文献求助10
2秒前
丸子发布了新的文献求助100
2秒前
2秒前
白羽佳发布了新的文献求助10
3秒前
lilili2060完成签到,获得积分10
3秒前
王ChungKing完成签到 ,获得积分10
3秒前
yao chen发布了新的文献求助10
3秒前
3秒前
完美世界应助JTB采纳,获得10
3秒前
3秒前
333发布了新的文献求助10
3秒前
一一发布了新的文献求助10
3秒前
4秒前
Lea应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
wy.he应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Lea应助科研通管家采纳,获得50
4秒前
斧王应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
Lynette发布了新的文献求助10
5秒前
老南瓜完成签到,获得积分10
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590