A Graph-Based Approach to Mitigate Drug-Drug Interactions and Optimize Therapeutic Regimens

药品 计算机科学 图形 药理学 医学 理论计算机科学
作者
Marios Spanakis,Eleftheria Tzamali,Georgios Tzedakis,Emmanouil G. Spanakis,Aristides Tsatsakis,Vangelis Sakkalis
标识
DOI:10.1109/bibe60311.2023.00041
摘要

Drug-drug interactions (DDIs) pose a significant issue in modern healthcare, potentially compromising treatment efficacy and patient safety. DDIs arise when significant alterations occur in the pharmacological action of a drug due to its co-administration with another drug, leading to potential adverse drug reactions (ADRs), toxicity or diminished therapeutic efficacy. Apart from the obvious cases of drug combinations that should be avoided, there are instances where risk-benefit analysis may allow co-administration. Hence, DDIs may represent clinically significant cases depending on the clinical outcome, time point of administration, etc. The issue is especially critical in cases of patients with multimorbidity and complex therapeutic regimens with different time points in drug administrations. This work employs a graph-based approach aimed at optimizing therapeutic regiments while considering the minimization of DDIs potential. In this approach each drug is represented as a node, and edges represent the clinical significance of DDIs. We aim to identify sets of drugs that either have no DDIs or exhibit minor to moderate clinical significance (referred to as Maximal Independent Sets), indicating that they can be taken together. In practice, we solved the complementary problem, which is finding Maximal Cliques. Both problems are NP-hard, but for small graphs, they can be solved exactly. From all the cliques we identify, those selected to be a part of each proposed therapeutic regimen must consist of nodes that appear only once. This problem is once again reduced to clique finding. The above approach is demonstrated using two clinical scenarios involving two patients who are experiencing polypharmacy and are at risk for ADRs due to potential DDIs of varying clinical significance. By applying our approach, the therapeutic schemes are optimized towards minimizing the risk of ADRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
好运莲莲发布了新的文献求助10
7秒前
7秒前
9秒前
Yangyang应助fiona7777采纳,获得100
10秒前
Sunny发布了新的文献求助10
10秒前
lull发布了新的文献求助10
10秒前
一夜很静完成签到,获得积分10
11秒前
小二郎应助寻123采纳,获得10
11秒前
LiLy完成签到 ,获得积分10
12秒前
evisure发布了新的文献求助10
13秒前
淼淼之锋发布了新的文献求助10
14秒前
15秒前
Ava应助好运莲莲采纳,获得10
17秒前
18秒前
无敌反派大美人应助weitq66采纳,获得10
18秒前
小吴同学完成签到,获得积分10
20秒前
evisure完成签到,获得积分10
20秒前
22秒前
小伙子发布了新的文献求助10
22秒前
tuanheqi应助Andrew采纳,获得20
24秒前
26秒前
lull发布了新的文献求助10
27秒前
30秒前
笑点低的火龙果完成签到,获得积分20
30秒前
天天快乐应助哈哈采纳,获得10
31秒前
包采梦发布了新的文献求助30
31秒前
十三完成签到,获得积分10
32秒前
小奇完成签到,获得积分20
32秒前
33秒前
34秒前
莉莉安完成签到 ,获得积分10
34秒前
小伙子完成签到,获得积分0
34秒前
35秒前
十三发布了新的文献求助10
36秒前
36秒前
寻123发布了新的文献求助10
36秒前
Phosphene应助小奇采纳,获得10
37秒前
睡不醒的xx完成签到 ,获得积分10
37秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346534
求助须知:如何正确求助?哪些是违规求助? 2973237
关于积分的说明 8658336
捐赠科研通 2653621
什么是DOI,文献DOI怎么找? 1453288
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662717