Early prediction of MOOC dropout in self-paced students using deep learning

辍学(神经网络) 计算机科学 深度学习 学习分析 人工智能 机器学习
作者
Wen Xiao,Juan Hu
出处
期刊:Interactive Learning Environments [Informa]
卷期号:: 1-18 被引量:3
标识
DOI:10.1080/10494820.2023.2300000
摘要

To address three issues identified in previous research this study proposes a clustering-based MOOC dropout identification method and an early prediction model based on deep learning. The MOOC learning behavior of self-paced students was analyzed, and two well-known MOOC datasets were used for analysis and validation. The findings are as follows: Firstly, the dropout rate among self-paced students in MOOCs exceeds 90%, with over 50% of students participating in online learning activities for only one day. Furthermore, the starting dates for students in the same course differ significantly. Secondly, leveraging early learning behavior and relevant background features, the proposed early prediction model accurately predicts over 98% of dropout cases and identifies over 50% of engaged students. Through training, the model's convolutional kernels capture meaningful weights for different days and activities. Lastly, background features related to students and courses have a more significant impact on dropout rates. The utilization of resources such as videos and active participation in learning activities, like asking questions, demonstrate a particularly significant influence on dropout rates. Notably, there is no fixed period that consistently affects dropout rates. These method and findings provide effective strategies for decreasing dropout rates and improving student engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的柏柳完成签到 ,获得积分10
刚刚
吃瓜落后者完成签到,获得积分10
2秒前
豆豆发布了新的文献求助10
2秒前
GY00发布了新的文献求助10
3秒前
上善若水发布了新的文献求助30
3秒前
4秒前
科研通AI2S应助AU采纳,获得10
5秒前
JM完成签到,获得积分10
6秒前
8秒前
啊啊啊发布了新的文献求助10
9秒前
希望天下0贩的0应助青林采纳,获得10
9秒前
Singularity应助大橘采纳,获得20
10秒前
英姑应助狂野的元容采纳,获得10
11秒前
11秒前
请叫我风吹麦浪应助123456采纳,获得10
13秒前
发发发完成签到,获得积分10
13秒前
追寻的易巧完成签到 ,获得积分10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
星满楼应助科研通管家采纳,获得20
15秒前
慕青应助科研通管家采纳,获得10
15秒前
双木应助科研通管家采纳,获得30
15秒前
小蘑菇应助科研通管家采纳,获得50
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
研友_Z14Yln应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
lwww应助科研通管家采纳,获得30
16秒前
Wyoou完成签到,获得积分10
16秒前
余叶发布了新的文献求助10
16秒前
20秒前
JamesPei应助楠楠采纳,获得10
20秒前
劲秉应助兜一兜采纳,获得30
21秒前
22秒前
大模型应助GY00采纳,获得10
24秒前
jyp111应助sdb采纳,获得10
25秒前
科目三应助pp若若gg采纳,获得10
26秒前
花痴的裘发布了新的文献求助50
26秒前
小小时光完成签到,获得积分10
26秒前
zhangpp发布了新的文献求助10
27秒前
Owen应助zhangz采纳,获得20
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720