Machine Learning Assisted Microchannel Geometric Optimization—A Case Study of Channel Designs

压力降 微通道 传热 制冷剂 强化传热 传热系数 机械 对流换热 微型热交换器 热交换器 材料科学 机械工程 工程类 物理
作者
Long Huang,Junjia Zou,Baoqing Liu,Zhi-jiang Jin,Jin-yuan Qian
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (1): 44-44 被引量:1
标识
DOI:10.3390/en17010044
摘要

At present, microchannel heat exchangers are widely applied in the fields of air-conditioning and heat pumping applications given their high heat transfer performance, compact size, and low material cost. However, designing and optimizing the channel geometries remain challenging, as they require balancing multiple competing objectives to achieve the optimal performance. This study investigates various parameters, including the channel count, wetted perimeter, cross-sectional area, and mass flow rate for each channel, to achieve the optimal efficiency. The optimization objectives include maximizing the heat transfer rate, minimizing the refrigerant convective thermal resistance, maximizing the refrigerant heat transfer coefficient, and minimizing the pressure drop. A multi-objective genetic optimization algorithm, in conjunction with artificial neural network (ANN)-based machine learning models, was used to predict the heat transfer rate to speed up the calculation process during the optimization. We identified that a gradient reduction in the wetted perimeter from the air inlet along the airflow direction could enhance the heat transfer rate. Additionally, the results indicate that an increase in the number of channels leads to an enhanced heat transfer efficiency rate. However, with the increase in the number of channels, the cross-sectional area of each channel is correspondingly reduced to maintain a consistent overall cross-sectional area. This reduction increases the fluid resistance, leading to an increased pressure drop across the system. This observation is critical for a microchannel design optimization, highlighting the importance of attaining a balance between achieving a higher heat transfer efficiency and maintaining a favorable fluid dynamic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanxu关注了科研通微信公众号
刚刚
1秒前
科研通AI6应助qda采纳,获得10
1秒前
充电宝应助ll采纳,获得10
1秒前
芦蕊洁发布了新的文献求助10
1秒前
toxin37发布了新的文献求助10
2秒前
lumos发布了新的文献求助10
4秒前
小胡发布了新的文献求助30
4秒前
Llt关闭了Llt文献求助
4秒前
5秒前
Hoodie发布了新的文献求助10
5秒前
6秒前
Jasper应助范雅寒采纳,获得10
6秒前
Renee完成签到 ,获得积分10
8秒前
苏子关注了科研通微信公众号
8秒前
qwp发布了新的文献求助20
8秒前
优雅灵波完成签到,获得积分10
10秒前
小明月完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助50
12秒前
12秒前
13秒前
GRG完成签到 ,获得积分0
13秒前
上官若男应助猪头采纳,获得10
13秒前
赘婿应助JonyiCheng采纳,获得10
14秒前
凌爽完成签到 ,获得积分10
14秒前
15秒前
15秒前
雨辰完成签到 ,获得积分10
15秒前
15秒前
JC完成签到,获得积分10
16秒前
甜橙汁完成签到,获得积分10
17秒前
HJJHJH发布了新的文献求助10
17秒前
思源应助帆帆牛采纳,获得10
17秒前
18秒前
Owen应助舒心初晴采纳,获得10
18秒前
王雨馨完成签到,获得积分10
19秒前
kkkk发布了新的文献求助10
19秒前
leo瀚发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720