Machine Learning Assisted Microchannel Geometric Optimization—A Case Study of Channel Designs

压力降 微通道 传热 制冷剂 强化传热 传热系数 机械 对流换热 微型热交换器 热交换器 材料科学 机械工程 工程类 物理
作者
Long Huang,Junjia Zou,Baoqing Liu,Zhi-jiang Jin,Jin-yuan Qian
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (1): 44-44 被引量:1
标识
DOI:10.3390/en17010044
摘要

At present, microchannel heat exchangers are widely applied in the fields of air-conditioning and heat pumping applications given their high heat transfer performance, compact size, and low material cost. However, designing and optimizing the channel geometries remain challenging, as they require balancing multiple competing objectives to achieve the optimal performance. This study investigates various parameters, including the channel count, wetted perimeter, cross-sectional area, and mass flow rate for each channel, to achieve the optimal efficiency. The optimization objectives include maximizing the heat transfer rate, minimizing the refrigerant convective thermal resistance, maximizing the refrigerant heat transfer coefficient, and minimizing the pressure drop. A multi-objective genetic optimization algorithm, in conjunction with artificial neural network (ANN)-based machine learning models, was used to predict the heat transfer rate to speed up the calculation process during the optimization. We identified that a gradient reduction in the wetted perimeter from the air inlet along the airflow direction could enhance the heat transfer rate. Additionally, the results indicate that an increase in the number of channels leads to an enhanced heat transfer efficiency rate. However, with the increase in the number of channels, the cross-sectional area of each channel is correspondingly reduced to maintain a consistent overall cross-sectional area. This reduction increases the fluid resistance, leading to an increased pressure drop across the system. This observation is critical for a microchannel design optimization, highlighting the importance of attaining a balance between achieving a higher heat transfer efficiency and maintaining a favorable fluid dynamic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助dyd采纳,获得30
1秒前
辛苦科研人完成签到 ,获得积分10
1秒前
慕青应助maomi采纳,获得10
2秒前
隐形曼青应助张雨欣采纳,获得10
3秒前
qqqqqq应助啁啾采纳,获得30
3秒前
体贴汽车发布了新的文献求助10
4秒前
4秒前
Lucas应助wodetaiyangLLL采纳,获得10
6秒前
8秒前
dnnnsns发布了新的文献求助10
11秒前
梅子完成签到 ,获得积分10
11秒前
12秒前
14秒前
iNk应助sally采纳,获得20
15秒前
专一的书雪完成签到,获得积分10
15秒前
张雨欣发布了新的文献求助10
17秒前
17秒前
zwj完成签到,获得积分10
18秒前
18秒前
watermanlo完成签到,获得积分10
19秒前
19秒前
lisa发布了新的文献求助10
20秒前
Orange应助木木采纳,获得10
20秒前
pipi1412发布了新的文献求助20
23秒前
25秒前
太叔捕发布了新的文献求助10
25秒前
27秒前
情怀应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
Hayat应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
64658应助科研通管家采纳,获得10
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
29秒前
不必发布了新的文献求助10
29秒前
pipi1412完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494