Knowledge distillation with attention mechanism for anomaly detection

机制(生物学) 异常检测 计算机科学 蒸馏 异常(物理) 人工智能 化学 色谱法 哲学 物理 认识论 凝聚态物理
作者
Mohan Li,Xiang Lyu,Xuan Guo
标识
DOI:10.1117/12.3012320
摘要

In the industrial domain, accurate detection and localization of abnormal images are crucial factors for ensuring production efficiency and quality. In recent years, methods in the field of unsupervised anomaly detection have predominantly centered around knowledge distillation models with a teacher-student structure. Although the application of knowledge distillation has significantly improved the precise identification of abnormal regions compared to traditional methods, the currently best-performing knowledge distillation models exhibit identical architectures for both the teacher and student networks. This limitation hampers the effective lightweighting of the student network and poses challenges in distinguishing between background and target objects in certain data with backgrounds, thereby affecting accuracy and wasting computational resources. To address this issue, we propose an innovative approach that integrates knowledge distillation with attention mechanisms for identifying abnormal regions in industrial anomaly images. Our method comprises two key features: firstly, transferring knowledge from a pretrained teacher network to a student network to enhance performance; secondly, incorporating attention mechanisms to direct the model's focus towards potential abnormal regions, thereby enhancing detection accuracy. Our approach innovatively combines knowledge distillation with attention mechanisms, offering a novel solution for industrial anomaly image recognition. Through experimental validation, our method demonstrates superior performance compared to the original models, providing fresh insights for the field of industrial anomaly image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年侠气夏老四完成签到,获得积分20
3秒前
4秒前
正直无春发布了新的文献求助10
5秒前
5秒前
于是完成签到,获得积分10
6秒前
qinsi15完成签到,获得积分10
7秒前
8秒前
聪慧的凡灵应助迅速又菡采纳,获得10
9秒前
10秒前
乐乐应助发酱采纳,获得10
12秒前
Orange应助qinsi15采纳,获得10
12秒前
正直无春完成签到,获得积分10
13秒前
谢珊发布了新的文献求助20
13秒前
棋士应助谭平采纳,获得10
13秒前
KKSTAR完成签到,获得积分10
15秒前
醉熏的天与应助123456采纳,获得10
17秒前
敢敢发布了新的文献求助10
17秒前
tuanhust应助高挑的向真采纳,获得10
17秒前
19秒前
coolkid应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
coolkid应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
coolkid应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
felix发布了新的文献求助30
20秒前
peterlee完成签到,获得积分10
21秒前
22秒前
小恐龙完成签到,获得积分10
23秒前
David完成签到 ,获得积分10
27秒前
121231完成签到,获得积分10
27秒前
yuzu完成签到,获得积分10
28秒前
明亮不乐发布了新的文献求助10
29秒前
30秒前
单于无极应助XU采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003