亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge distillation with attention mechanism for anomaly detection

机制(生物学) 异常检测 计算机科学 蒸馏 异常(物理) 人工智能 化学 色谱法 凝聚态物理 认识论 物理 哲学
作者
Mohan Li,Xiang Lyu,Xuan Guo
标识
DOI:10.1117/12.3012320
摘要

In the industrial domain, accurate detection and localization of abnormal images are crucial factors for ensuring production efficiency and quality. In recent years, methods in the field of unsupervised anomaly detection have predominantly centered around knowledge distillation models with a teacher-student structure. Although the application of knowledge distillation has significantly improved the precise identification of abnormal regions compared to traditional methods, the currently best-performing knowledge distillation models exhibit identical architectures for both the teacher and student networks. This limitation hampers the effective lightweighting of the student network and poses challenges in distinguishing between background and target objects in certain data with backgrounds, thereby affecting accuracy and wasting computational resources. To address this issue, we propose an innovative approach that integrates knowledge distillation with attention mechanisms for identifying abnormal regions in industrial anomaly images. Our method comprises two key features: firstly, transferring knowledge from a pretrained teacher network to a student network to enhance performance; secondly, incorporating attention mechanisms to direct the model's focus towards potential abnormal regions, thereby enhancing detection accuracy. Our approach innovatively combines knowledge distillation with attention mechanisms, offering a novel solution for industrial anomaly image recognition. Through experimental validation, our method demonstrates superior performance compared to the original models, providing fresh insights for the field of industrial anomaly image analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrhughas完成签到,获得积分10
4秒前
田様应助张尧摇摇摇采纳,获得10
29秒前
37秒前
42秒前
Koala04完成签到,获得积分10
55秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
闪明火龙果完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
今后应助rebeycca采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
抹不掉的记忆完成签到,获得积分10
5分钟前
Swear完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457