Knowledge distillation with attention mechanism for anomaly detection

机制(生物学) 异常检测 计算机科学 蒸馏 异常(物理) 人工智能 化学 色谱法 哲学 物理 认识论 凝聚态物理
作者
Mohan Li,Xiang Lyu,Xuan Guo
标识
DOI:10.1117/12.3012320
摘要

In the industrial domain, accurate detection and localization of abnormal images are crucial factors for ensuring production efficiency and quality. In recent years, methods in the field of unsupervised anomaly detection have predominantly centered around knowledge distillation models with a teacher-student structure. Although the application of knowledge distillation has significantly improved the precise identification of abnormal regions compared to traditional methods, the currently best-performing knowledge distillation models exhibit identical architectures for both the teacher and student networks. This limitation hampers the effective lightweighting of the student network and poses challenges in distinguishing between background and target objects in certain data with backgrounds, thereby affecting accuracy and wasting computational resources. To address this issue, we propose an innovative approach that integrates knowledge distillation with attention mechanisms for identifying abnormal regions in industrial anomaly images. Our method comprises two key features: firstly, transferring knowledge from a pretrained teacher network to a student network to enhance performance; secondly, incorporating attention mechanisms to direct the model's focus towards potential abnormal regions, thereby enhancing detection accuracy. Our approach innovatively combines knowledge distillation with attention mechanisms, offering a novel solution for industrial anomaly image recognition. Through experimental validation, our method demonstrates superior performance compared to the original models, providing fresh insights for the field of industrial anomaly image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠无声完成签到,获得积分10
刚刚
Jiang完成签到,获得积分10
1秒前
大模型应助称心的乘云采纳,获得10
1秒前
桐桐应助lw采纳,获得10
2秒前
2秒前
Hello应助连冬萱采纳,获得30
3秒前
3秒前
4秒前
Rain_BJ发布了新的文献求助10
4秒前
Carolin完成签到,获得积分10
5秒前
孙宗帅发布了新的文献求助10
5秒前
5秒前
iam小羊人发布了新的文献求助20
5秒前
6秒前
下雨天睡个懒觉完成签到,获得积分10
7秒前
丘比特应助强壮的美女采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
认真灯泡完成签到,获得积分10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得30
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
TheSail发布了新的文献求助10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702