End-to-end volumetric segmentation of white matter hyperintensities using deep learning

分割 流体衰减反转恢复 概化理论 计算机科学 高强度 人工智能 深度学习 过度拟合 背景(考古学) 模式识别(心理学) 机器学习 磁共振成像 人工神经网络 医学 数学 统计 生物 放射科 古生物学
作者
Sadaf Farkhani,Naiara Demnitz,Carl‐Johan Boraxbekk,Henrik Lundell,Hartwig R. Siebner,Esben Thade Petersen,Kristoffer H. Madsen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:245: 108008-108008 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108008
摘要

Reliable detection of white matter hyperintensities (WMH) is crucial for studying the impact of diffuse white-matter pathology on brain health and monitoring changes in WMH load over time. However, manual annotation of 3D high-dimensional neuroimages is laborious and can be prone to biases and errors in the annotation procedure. In this study, we evaluate the performance of deep learning (DL) segmentation tools and propose a novel volumetric segmentation model incorporating self-attention via a transformer-based architecture. Ultimately, we aim to evaluate diverse factors that influence WMH segmentation, aiming for a comprehensive analysis of the state-of-the-art algorithms in a broader context. We trained state-of-the-art DL algorithms, and incorporated advanced attention mechanisms, using structural fluid-attenuated inversion recovery (FLAIR) image acquisitions. The anatomical MRI data utilized for model training was obtained from healthy individuals aged 62-70 years in the LIve active Successful Aging (LISA) project. Given the potential sparsity of lesion volume among healthy aging individuals, we explored the impact of incorporating a weighted loss function and ensemble models. To assess the generalizability of the studied DL models, we applied the trained algorithm to an independent subset of data sourced from the MICCAI WMH challenge (MWSC). Notably, this subset had vastly different acquisition parameters compared to the LISA dataset used for training. Consistently, DL approaches exhibited commendable segmentation performance, achieving the level of inter-rater agreement comparable to expert performance, ensuring superior quality segmentation outcomes. On the out of sample dataset, the ensemble models exhibited the most outstanding performance. DL methods generally surpassed conventional approaches in our study. While all DL methods performed comparably, incorporating attention mechanisms could prove advantageous in future applications with a wider availability of training data. As expected, our experiments indicate that the use of ensemble-based models enables the superior generalization in out-of-distribution settings. We believe that introducing DL methods in the WHM annotation workflow in heathy aging cohorts is promising, not only for reducing the annotation time required, but also for eventually improving accuracy and robustness via incorporating the automatic segmentations in the evaluation procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
刚刚
林轩发布了新的文献求助10
1秒前
liu完成签到,获得积分20
2秒前
2秒前
2秒前
slycmd完成签到,获得积分10
2秒前
贝贝贝完成签到,获得积分10
2秒前
2秒前
4秒前
乐观的颦发布了新的文献求助10
4秒前
欣欣向荣完成签到,获得积分10
4秒前
Orange应助标致的又槐采纳,获得10
5秒前
orixero应助小明采纳,获得10
5秒前
Ge发布了新的文献求助10
6秒前
6秒前
陈豆豆完成签到 ,获得积分10
7秒前
douding发布了新的文献求助10
7秒前
呼呼呼发布了新的文献求助10
7秒前
AU发布了新的文献求助10
8秒前
雁夜完成签到,获得积分10
8秒前
贾西贝关注了科研通微信公众号
8秒前
9秒前
碳烤小肥肠完成签到,获得积分10
9秒前
czh完成签到 ,获得积分20
9秒前
穿靴子的Caroline完成签到,获得积分20
10秒前
nibaba完成签到,获得积分10
10秒前
细腻慕青发布了新的文献求助10
11秒前
zyc发布了新的文献求助10
11秒前
果果完成签到,获得积分10
11秒前
Chen完成签到,获得积分10
11秒前
叮叮叮发布了新的文献求助10
12秒前
xxh完成签到,获得积分10
13秒前
14秒前
15秒前
田様应助DanWu采纳,获得10
16秒前
von完成签到,获得积分10
16秒前
鳗鱼乐巧完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655