A critical review on prognostics for stochastic degrading systems under big data

预言 大数据 计算机科学 风险分析(工程) 可靠性(半导体) 数据科学 工程类 可靠性工程 数据挖掘 业务 功率(物理) 物理 量子力学
作者
Huiqin Li,Xiaosheng Si,Zhengxin Zhang,Tianmei Li
出处
期刊:Fundamental research [Elsevier]
被引量:6
标识
DOI:10.1016/j.fmre.2024.01.004
摘要

As one of the key technologies to maintain the safety and reliability of stochastic degrading systems, remaining useful life (RUL) prediction, also known as prognostics, has been attached great importance in recent years. Particularly, with the rapid development of industrial 4.0 and internet-of-things (IoT), prognostics for stochastic degrading systems under big data have been paid much attention in recent years and various prognosis methods have been reported. However, there has not been a critical review particularly focused on the strengths and weaknesses of these methods to provoke the new ideas for the prognostics research. To fill this gap, facing the realistic demand of prognostics of stochastic degrading systems under the background of big data, this paper profoundly analyzes the basic research ideas, development trends, and common problems of various data-driven prognostics methods, mainly including statistical data-driven methods, machine learning (ML) based methods, hybrid prognostics of statistical data-driven methods and ML based methods. Particularly, this paper discusses the emerging topic of prognosis under incomplete big data and the possible opportunities in the future are highlighted. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of prognostics for stochastic degrading systems under big data. While an exhaustive review on prognostics methods remains elusive, we hope that the perspectives and discussions in this paper can serve as a stimulus for new prognostics research in the era of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
dd发布了新的文献求助10
1秒前
吕喜梅完成签到,获得积分20
1秒前
琳666完成签到,获得积分10
1秒前
CodeCraft应助文献小当家采纳,获得10
1秒前
1秒前
玄机完成签到 ,获得积分10
2秒前
zwf123完成签到,获得积分10
2秒前
薛禾完成签到,获得积分10
2秒前
饱满翠绿发布了新的文献求助10
2秒前
搜集达人应助momi采纳,获得10
2秒前
Agoni完成签到,获得积分10
3秒前
香蕉觅云应助正直夜安采纳,获得10
4秒前
4秒前
daxia9527完成签到,获得积分10
4秒前
1230完成签到,获得积分10
4秒前
五月完成签到 ,获得积分10
4秒前
5秒前
JIE发布了新的文献求助10
5秒前
xixo完成签到,获得积分10
5秒前
5秒前
庾幻儿完成签到,获得积分10
5秒前
5秒前
嘿嘿应助love1226采纳,获得10
6秒前
Stella应助Cindy165采纳,获得10
6秒前
serendipity完成签到,获得积分10
6秒前
miao发布了新的文献求助20
6秒前
知否完成签到 ,获得积分0
7秒前
tonyguo发布了新的文献求助10
7秒前
NexusExplorer应助奇异果果采纳,获得10
7秒前
谦让的含海应助易相逢采纳,获得10
7秒前
bkagyin应助maclogos采纳,获得10
7秒前
7秒前
7秒前
8秒前
小Z发布了新的文献求助10
8秒前
acs924完成签到,获得积分10
8秒前
8秒前
zxc完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006