A critical review on prognostics for stochastic degrading systems under big data

预言 大数据 计算机科学 风险分析(工程) 可靠性(半导体) 数据科学 工程类 可靠性工程 数据挖掘 业务 功率(物理) 物理 量子力学
作者
Huiqin Li,Xiaosheng Si,Zhengxin Zhang,Tianmei Li
出处
期刊:Fundamental research [Elsevier]
被引量:6
标识
DOI:10.1016/j.fmre.2024.01.004
摘要

As one of the key technologies to maintain the safety and reliability of stochastic degrading systems, remaining useful life (RUL) prediction, also known as prognostics, has been attached great importance in recent years. Particularly, with the rapid development of industrial 4.0 and internet-of-things (IoT), prognostics for stochastic degrading systems under big data have been paid much attention in recent years and various prognosis methods have been reported. However, there has not been a critical review particularly focused on the strengths and weaknesses of these methods to provoke the new ideas for the prognostics research. To fill this gap, facing the realistic demand of prognostics of stochastic degrading systems under the background of big data, this paper profoundly analyzes the basic research ideas, development trends, and common problems of various data-driven prognostics methods, mainly including statistical data-driven methods, machine learning (ML) based methods, hybrid prognostics of statistical data-driven methods and ML based methods. Particularly, this paper discusses the emerging topic of prognosis under incomplete big data and the possible opportunities in the future are highlighted. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of prognostics for stochastic degrading systems under big data. While an exhaustive review on prognostics methods remains elusive, we hope that the perspectives and discussions in this paper can serve as a stimulus for new prognostics research in the era of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助lxl采纳,获得10
1秒前
电闪完成签到,获得积分10
1秒前
0109完成签到,获得积分10
2秒前
Hello应助浅呀呀呀采纳,获得10
2秒前
ding应助柑橘味的汽水采纳,获得10
4秒前
5秒前
高贵熊猫应助wzy采纳,获得20
6秒前
贺光萌完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
scanker1981发布了新的文献求助30
10秒前
10秒前
11秒前
小芽完成签到,获得积分10
11秒前
scanker1981发布了新的文献求助30
11秒前
scanker1981发布了新的文献求助10
11秒前
scanker1981发布了新的文献求助10
11秒前
12秒前
空白格完成签到 ,获得积分10
12秒前
Emilia发布了新的文献求助10
13秒前
金金金完成签到,获得积分10
13秒前
可爱花瓣发布了新的文献求助10
13秒前
打打应助xfwd采纳,获得10
13秒前
13秒前
15秒前
Yang完成签到,获得积分10
15秒前
爱学术的LaoD完成签到,获得积分10
16秒前
16秒前
南风完成签到,获得积分10
16秒前
胡1111完成签到 ,获得积分10
17秒前
lxl发布了新的文献求助10
17秒前
Han完成签到 ,获得积分10
18秒前
DandanHan0916完成签到,获得积分10
18秒前
爆米花应助灌灌灌灌规划采纳,获得10
18秒前
czj发布了新的文献求助10
18秒前
XY完成签到 ,获得积分10
19秒前
wen完成签到,获得积分10
19秒前
朴素冰露发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307051
求助须知:如何正确求助?哪些是违规求助? 4452740
关于积分的说明 13855150
捐赠科研通 4340324
什么是DOI,文献DOI怎么找? 2383115
邀请新用户注册赠送积分活动 1377917
关于科研通互助平台的介绍 1345800