A critical review on prognostics for stochastic degrading systems under big data

预言 大数据 计算机科学 风险分析(工程) 可靠性(半导体) 数据科学 工程类 可靠性工程 数据挖掘 业务 功率(物理) 物理 量子力学
作者
Huiqin Li,Xiaosheng Si,Zhengxin Zhang,Tianmei Li
出处
期刊:Fundamental research [Elsevier BV]
被引量:6
标识
DOI:10.1016/j.fmre.2024.01.004
摘要

As one of the key technologies to maintain the safety and reliability of stochastic degrading systems, remaining useful life (RUL) prediction, also known as prognostics, has been attached great importance in recent years. Particularly, with the rapid development of industrial 4.0 and internet-of-things (IoT), prognostics for stochastic degrading systems under big data have been paid much attention in recent years and various prognosis methods have been reported. However, there has not been a critical review particularly focused on the strengths and weaknesses of these methods to provoke the new ideas for the prognostics research. To fill this gap, facing the realistic demand of prognostics of stochastic degrading systems under the background of big data, this paper profoundly analyzes the basic research ideas, development trends, and common problems of various data-driven prognostics methods, mainly including statistical data-driven methods, machine learning (ML) based methods, hybrid prognostics of statistical data-driven methods and ML based methods. Particularly, this paper discusses the emerging topic of prognosis under incomplete big data and the possible opportunities in the future are highlighted. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of prognostics for stochastic degrading systems under big data. While an exhaustive review on prognostics methods remains elusive, we hope that the perspectives and discussions in this paper can serve as a stimulus for new prognostics research in the era of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗曼蒂克完成签到,获得积分10
刚刚
爱狗先森发布了新的文献求助10
刚刚
刚刚
啵子发布了新的文献求助10
刚刚
天真的铭发布了新的文献求助10
1秒前
匆匆完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助wang采纳,获得10
1秒前
shilong.yang完成签到,获得积分10
2秒前
Dobrzs发布了新的文献求助10
2秒前
2秒前
所所应助唠叨的又菡采纳,获得10
3秒前
4秒前
ggxhygr发布了新的文献求助10
4秒前
田田田发布了新的文献求助10
5秒前
5秒前
董春伟应助ll采纳,获得10
5秒前
zyf完成签到,获得积分10
6秒前
yuyukeke发布了新的文献求助10
6秒前
孙大大关注了科研通微信公众号
6秒前
米团发布了新的文献求助10
7秒前
7秒前
czqjlu完成签到,获得积分10
7秒前
若非菜孰愿弟完成签到,获得积分10
7秒前
1235完成签到,获得积分10
8秒前
咕噜完成签到 ,获得积分10
8秒前
9秒前
浮游应助Mydddg采纳,获得15
9秒前
Hello应助吸墨采纳,获得10
9秒前
9秒前
lv发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
爱笑访文应助张宇琪采纳,获得10
11秒前
Freedom发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970