A critical review on prognostics for stochastic degrading systems under big data

预言 大数据 计算机科学 风险分析(工程) 可靠性(半导体) 数据科学 工程类 可靠性工程 数据挖掘 业务 功率(物理) 物理 量子力学
作者
Huiqin Li,Xiaosheng Si,Zhengxin Zhang,Tianmei Li
出处
期刊:Fundamental research [Elsevier BV]
标识
DOI:10.1016/j.fmre.2024.01.004
摘要

As one of the key technologies to maintain the safety and reliability of stochastic degrading systems, remaining useful life (RUL) prediction, also known as prognostics, has been attached great importance in recent years. Particularly, with the rapid development of industrial 4.0 and internet-of-things (IoT), prognostics for stochastic degrading systems under big data have been paid much attention in recent years and various prognosis methods have been reported. However, there has not been a critical review particularly focused on the strengths and weaknesses of these methods to provoke the new ideas for the prognostics research. To fill this gap, facing the realistic demand of prognostics of stochastic degrading systems under the background of big data, this paper profoundly analyzes the basic research ideas, development trends, and common problems of various data-driven prognostics methods, mainly including statistical data-driven methods, machine learning (ML) based methods, hybrid prognostics of statistical data-driven methods and ML based methods. Particularly, this paper discusses the emerging topic of prognosis under incomplete big data and the possible opportunities in the future are highlighted. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of prognostics for stochastic degrading systems under big data. While an exhaustive review on prognostics methods remains elusive, we hope that the perspectives and discussions in this paper can serve as a stimulus for new prognostics research in the era of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaer发布了新的文献求助10
刚刚
脑洞疼应助iWanted采纳,获得10
刚刚
薛梦关注了科研通微信公众号
1秒前
隐形曼青应助千千晚星采纳,获得10
1秒前
可耐的思远完成签到,获得积分10
1秒前
周雨婷发布了新的文献求助10
1秒前
1秒前
大模型应助老实的百招采纳,获得10
2秒前
Akim应助Xue采纳,获得10
2秒前
2秒前
threonine发布了新的文献求助10
2秒前
清水完成签到,获得积分10
3秒前
3秒前
抹茶冰淇淋完成签到 ,获得积分10
3秒前
西瓜刀发布了新的文献求助10
4秒前
Jasper应助7777777采纳,获得10
4秒前
5秒前
6秒前
英姑应助hying采纳,获得30
6秒前
6秒前
科目三应助feifeizhu采纳,获得10
7秒前
香蕉寒梅完成签到,获得积分10
7秒前
萧十一郎完成签到,获得积分10
8秒前
8秒前
norberta发布了新的文献求助10
8秒前
粱乘风发布了新的文献求助10
8秒前
赘婿应助生动的慕卉采纳,获得10
8秒前
周雨婷完成签到,获得积分20
9秒前
吉以寒完成签到,获得积分10
9秒前
9秒前
静俏发布了新的文献求助10
9秒前
9秒前
bxb发布了新的文献求助10
10秒前
10秒前
11秒前
hush发布了新的文献求助10
11秒前
qingchidue完成签到,获得积分10
11秒前
11秒前
Kristine发布了新的文献求助10
12秒前
Akim应助178181采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060