A critical review on prognostics for stochastic degrading systems under big data

预言 大数据 计算机科学 风险分析(工程) 可靠性(半导体) 数据科学 工程类 可靠性工程 数据挖掘 业务 功率(物理) 物理 量子力学
作者
Huiqin Li,Xiaosheng Si,Zhengxin Zhang,Tianmei Li
出处
期刊:Fundamental research [Elsevier]
被引量:6
标识
DOI:10.1016/j.fmre.2024.01.004
摘要

As one of the key technologies to maintain the safety and reliability of stochastic degrading systems, remaining useful life (RUL) prediction, also known as prognostics, has been attached great importance in recent years. Particularly, with the rapid development of industrial 4.0 and internet-of-things (IoT), prognostics for stochastic degrading systems under big data have been paid much attention in recent years and various prognosis methods have been reported. However, there has not been a critical review particularly focused on the strengths and weaknesses of these methods to provoke the new ideas for the prognostics research. To fill this gap, facing the realistic demand of prognostics of stochastic degrading systems under the background of big data, this paper profoundly analyzes the basic research ideas, development trends, and common problems of various data-driven prognostics methods, mainly including statistical data-driven methods, machine learning (ML) based methods, hybrid prognostics of statistical data-driven methods and ML based methods. Particularly, this paper discusses the emerging topic of prognosis under incomplete big data and the possible opportunities in the future are highlighted. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of prognostics for stochastic degrading systems under big data. While an exhaustive review on prognostics methods remains elusive, we hope that the perspectives and discussions in this paper can serve as a stimulus for new prognostics research in the era of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JFP完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
CodeCraft应助biu采纳,获得10
3秒前
飞快的语蕊完成签到,获得积分10
4秒前
小程同学完成签到,获得积分10
5秒前
竹本完成签到 ,获得积分10
5秒前
Vanness发布了新的文献求助10
5秒前
pancake发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
浮游应助ZZZ采纳,获得10
8秒前
11秒前
11秒前
赘婿应助王小帅ok采纳,获得10
12秒前
久伴久爱完成签到 ,获得积分10
12秒前
林晨则静完成签到 ,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
mingmingjiu发布了新的文献求助10
14秒前
张艺馨发布了新的文献求助10
14秒前
赵寒迟完成签到 ,获得积分10
14秒前
cwz发布了新的文献求助10
14秒前
体贴的老太完成签到,获得积分20
14秒前
孟龙威发布了新的文献求助10
15秒前
完美世界应助无奈敏采纳,获得10
15秒前
小陈完成签到,获得积分10
16秒前
彭于晏应助残幻采纳,获得10
16秒前
123应助无敌小b采纳,获得10
17秒前
FashionBoy应助啤酒半斤采纳,获得10
17秒前
17秒前
哭泣的宛丝完成签到,获得积分10
18秒前
biu发布了新的文献求助10
18秒前
鱼猫完成签到,获得积分20
18秒前
19秒前
chenhy完成签到,获得积分10
19秒前
帅气的Bond完成签到,获得积分10
20秒前
aa发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337