亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助sun采纳,获得10
26秒前
xiaoleihu完成签到 ,获得积分10
28秒前
andrele发布了新的文献求助10
32秒前
33秒前
Lucas应助safari采纳,获得10
34秒前
sun发布了新的文献求助10
56秒前
mmmmm完成签到,获得积分10
57秒前
1分钟前
RR发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
RR完成签到,获得积分10
1分钟前
Criminology34应助andrele采纳,获得10
1分钟前
CodeCraft应助Marco_hxkq采纳,获得10
1分钟前
吉安娜完成签到 ,获得积分10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
GingerF应助科研通管家采纳,获得100
2分钟前
2分钟前
Marco_hxkq发布了新的文献求助10
2分钟前
2分钟前
正直的友容完成签到,获得积分10
2分钟前
2分钟前
2分钟前
共享精神应助islazheng采纳,获得100
2分钟前
wcy发布了新的文献求助10
2分钟前
wcy完成签到,获得积分20
2分钟前
JamesPei应助乔一一采纳,获得10
2分钟前
柚子叶滋滋完成签到 ,获得积分10
3分钟前
呆萌冰彤完成签到 ,获得积分10
3分钟前
脑洞疼应助sun采纳,获得10
4分钟前
4分钟前
sun发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
wop111应助科研通管家采纳,获得20
4分钟前
4分钟前
Hello应助自由的32采纳,获得10
4分钟前
乔一一发布了新的文献求助10
4分钟前
4分钟前
banbieshenlu完成签到,获得积分10
4分钟前
自由的32完成签到,获得积分10
4分钟前
彭于晏应助愉博采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110992
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712