清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松幼南完成签到 ,获得积分10
36秒前
shhoing应助科研通管家采纳,获得10
1分钟前
npknpk完成签到,获得积分10
1分钟前
Orange应助Ajay采纳,获得30
1分钟前
雪山飞龙完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
Ajay完成签到 ,获得积分10
3分钟前
Klaus完成签到 ,获得积分10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分0
3分钟前
3分钟前
Ajay发布了新的文献求助30
4分钟前
CipherSage应助丽海张采纳,获得30
4分钟前
赵一完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
丽海张发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
英姑应助科研通管家采纳,获得10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
文静身边充满小确幸完成签到 ,获得积分10
5分钟前
5分钟前
Prometheusss发布了新的文献求助10
5分钟前
Prometheusss完成签到,获得积分10
5分钟前
5分钟前
深海理疗发布了新的文献求助10
6分钟前
al完成签到 ,获得积分0
6分钟前
Prometheusss发布了新的文献求助10
6分钟前
下文献的蜉蝣完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
洁净百川完成签到 ,获得积分10
7分钟前
7分钟前
Prometheusss发布了新的文献求助10
7分钟前
fufufu123完成签到 ,获得积分10
8分钟前
nuoberry发布了新的文献求助30
8分钟前
景安白完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583