Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助张中山采纳,获得10
刚刚
泡芙完成签到 ,获得积分10
1秒前
1秒前
orixero应助姚友进采纳,获得10
1秒前
不倦发布了新的文献求助10
3秒前
研晓晓发布了新的文献求助10
3秒前
4秒前
踏实天亦完成签到,获得积分10
4秒前
xunuo完成签到,获得积分10
6秒前
7秒前
xuexuezi关注了科研通微信公众号
7秒前
求助者发布了新的文献求助30
7秒前
7秒前
55关注了科研通微信公众号
9秒前
9秒前
背后橘子完成签到,获得积分10
10秒前
豆豆发布了新的文献求助10
10秒前
Owen应助清新的问枫采纳,获得10
10秒前
尔玉完成签到 ,获得积分10
11秒前
cbz发布了新的文献求助10
11秒前
cj完成签到,获得积分10
11秒前
13秒前
14秒前
ganymede完成签到,获得积分10
15秒前
16秒前
Youngboom发布了新的文献求助10
16秒前
16秒前
从容栾发布了新的文献求助10
17秒前
共享精神应助贝湾采纳,获得10
18秒前
Ava应助贝湾采纳,获得10
18秒前
19秒前
许子健发布了新的文献求助10
19秒前
glycine发布了新的文献求助10
19秒前
cj发布了新的文献求助10
20秒前
charles发布了新的文献求助10
21秒前
22秒前
24秒前
今后应助坚定的凝云采纳,获得10
25秒前
Jnscal完成签到,获得积分10
26秒前
55发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534