Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biglixiang发布了新的文献求助10
刚刚
wuu发布了新的文献求助10
刚刚
迅速的念芹完成签到 ,获得积分10
刚刚
魏笑白发布了新的文献求助20
刚刚
岁月星辰完成签到,获得积分10
1秒前
1秒前
勤恳冰彤完成签到 ,获得积分10
2秒前
可爱的函函应助Rebekah采纳,获得10
3秒前
AstonMAO_完成签到,获得积分10
3秒前
stws发布了新的文献求助10
3秒前
4秒前
4秒前
云九卿完成签到,获得积分10
4秒前
科研通AI6应助王赟晖采纳,获得10
4秒前
大力半鬼完成签到,获得积分10
5秒前
临兵者完成签到 ,获得积分10
5秒前
yoyo发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
view发布了新的文献求助10
6秒前
灰灰发布了新的文献求助10
7秒前
LRR完成签到 ,获得积分10
7秒前
7秒前
8秒前
liu发布了新的文献求助10
8秒前
勤恳的一斩完成签到,获得积分10
8秒前
8秒前
duts发布了新的文献求助10
9秒前
临兵者关注了科研通微信公众号
9秒前
Serenade发布了新的文献求助10
9秒前
9秒前
9秒前
薇薇快跑完成签到,获得积分20
9秒前
无所谓的啦完成签到,获得积分10
9秒前
10秒前
10秒前
机灵人雄发布了新的文献求助10
11秒前
Mohr关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237