已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助七七采纳,获得10
2秒前
2秒前
yao关闭了yao文献求助
3秒前
FashionBoy应助anya采纳,获得200
4秒前
5秒前
萝卜青菜完成签到,获得积分10
6秒前
小李子关注了科研通微信公众号
8秒前
保卫时光发布了新的文献求助50
8秒前
眼中星光发布了新的文献求助10
10秒前
10秒前
10秒前
善学以致用应助百浪多息采纳,获得10
11秒前
张达发布了新的文献求助10
11秒前
12秒前
12秒前
捏捏我的小短腿完成签到,获得积分10
14秒前
RDF发布了新的文献求助10
14秒前
15秒前
15秒前
木木夕云发布了新的文献求助10
16秒前
zhizhi完成签到,获得积分20
16秒前
yinjs158发布了新的文献求助10
16秒前
上官若男应助张达采纳,获得10
17秒前
17秒前
18秒前
文静的刺猬完成签到,获得积分20
19秒前
777567发布了新的文献求助10
20秒前
YuuuY发布了新的文献求助10
20秒前
20秒前
21秒前
快乐石头发布了新的文献求助10
21秒前
sweetrumors发布了新的文献求助10
22秒前
wen发布了新的文献求助30
22秒前
柳易槐发布了新的文献求助20
22秒前
小李子发布了新的文献求助10
22秒前
23秒前
24秒前
yourkit发布了新的文献求助30
26秒前
万能图书馆应助萝卜青菜采纳,获得30
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467