Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZL完成签到 ,获得积分10
1秒前
2秒前
逝水完成签到 ,获得积分10
3秒前
4秒前
传奇3应助积极的忆曼采纳,获得10
4秒前
wsq完成签到 ,获得积分10
6秒前
8秒前
稻子完成签到 ,获得积分10
8秒前
Dawn完成签到 ,获得积分10
10秒前
10秒前
kong完成签到 ,获得积分10
10秒前
Tao完成签到 ,获得积分10
10秒前
讨厌下雨发布了新的文献求助10
11秒前
啊楠完成签到,获得积分10
13秒前
Li chun sheng完成签到,获得积分10
13秒前
段落落发布了新的文献求助10
14秒前
顾矜应助ZH采纳,获得10
15秒前
努力看文献的小杨完成签到,获得积分10
15秒前
大壮完成签到,获得积分10
15秒前
yml完成签到 ,获得积分10
15秒前
张帆远航完成签到,获得积分10
18秒前
冯二完成签到,获得积分10
20秒前
21秒前
23秒前
24秒前
Eric完成签到 ,获得积分0
26秒前
冯二发布了新的文献求助10
26秒前
27秒前
AFF完成签到,获得积分10
27秒前
28秒前
hululu完成签到 ,获得积分10
28秒前
Benjamin完成签到,获得积分10
28秒前
Megannnb完成签到,获得积分10
29秒前
陶军辉完成签到 ,获得积分10
29秒前
灵梦柠檬酸完成签到,获得积分10
29秒前
御风完成签到,获得积分10
31秒前
笑笑发布了新的文献求助10
31秒前
轻松笙发布了新的文献求助10
32秒前
32秒前
byelue发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011