Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助独特飞机采纳,获得10
刚刚
SciGPT应助卜学英采纳,获得10
1秒前
小马甲应助哭泣的宛丝采纳,获得10
1秒前
1秒前
深情安青应助酷炫的铸海采纳,获得10
2秒前
2秒前
yuon发布了新的文献求助10
3秒前
龙月完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助50
4秒前
5秒前
爆米花应助5433采纳,获得10
5秒前
李大锤发布了新的文献求助10
6秒前
7秒前
乐乐应助GGZ采纳,获得10
7秒前
明月清风发布了新的文献求助10
7秒前
教育厮完成签到,获得积分10
8秒前
硕大的肌肉完成签到,获得积分10
8秒前
9秒前
无花果应助GGZ采纳,获得10
11秒前
所所应助GGZ采纳,获得10
11秒前
汉堡包应助整齐千柳采纳,获得10
11秒前
11秒前
我是老大应助droke采纳,获得10
11秒前
mike_007发布了新的文献求助10
11秒前
Dr. Chen发布了新的文献求助10
12秒前
13秒前
shi发布了新的文献求助10
14秒前
眼圆广志完成签到,获得积分10
14秒前
大模型应助不二采纳,获得10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI6应助最爱吃火锅采纳,获得10
16秒前
17秒前
gx发布了新的文献求助10
17秒前
跳跃笑阳发布了新的文献求助10
18秒前
clamon完成签到,获得积分10
18秒前
19秒前
卜学英发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196