Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study

步态 随机森林 生物识别 支持向量机 回归分析 人工智能 计算机科学 线性回归 回归 交叉验证 机器学习 统计 物理医学与康复 数学 医学
作者
Jingying Wang,Yeye Wen,Jeong-Mo Yang,Nan Zhao,Tingshao Zhu
出处
期刊:Gait & Posture [Elsevier]
卷期号:109: 15-21
标识
DOI:10.1016/j.gaitpost.2024.01.013
摘要

Stress is a critical risk factor for various health issues, but an objective, non-intrusive and effective measurement approach for stress has not yet been established. Gait, the pattern of movements in human locomotion, has been proven to be a valid behavioral indicator for recognizing various mental states in a convenient manner. This study aims to identify the severity of stress by assessing human gait recorded through an objective, non-intrusive measurement approach. One hundred and fifty-two participants with an average age of 23 years old (SD = 1.07) were recruited. The Chinese version of the Perceived Stress Scale with 10 items (PSS-10) was used to assess participants' stress levels. The participants were then required to walk naturally while being recorded with a regular camera. A total of 1320 time-domain and 1152 frequency-domain gait features were extracted from the videos. The top 40 contributing features, confirmed by dimensionality reduction, were input into models consisting of four machine-learning regression algorithms (i.e., Gaussian Process Regressor, Linear Regression, Random Forest Regressor, and Support Vector regression), to assess stress levels. The models that combined time- and frequency-domain features performed best, with the lowest RMSE (4.972) and highest validation (r = 0.533). The Gaussian Process Regressor and Linear Regression outperformed the others. The greatest contribution to model performance was derived from gait features of the waist, hands, and legs. The severity of stress can be accurately detected by machine learning models using two-dimensional (2D) video-based gait data. The machine learning models used for assessing perceived stress were reliable. Waist, hand, and leg movements were found to be critical indicator in detecting stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
刚刚
yyy发布了新的文献求助30
刚刚
刚刚
程风破浪发布了新的文献求助10
1秒前
2秒前
2秒前
霜烬染完成签到,获得积分10
3秒前
人123456发布了新的文献求助10
3秒前
4秒前
赫幼蓉完成签到 ,获得积分10
4秒前
boging发布了新的文献求助10
5秒前
安静凝海完成签到,获得积分10
5秒前
8秒前
lalala发布了新的文献求助10
8秒前
8秒前
风不言喻发布了新的文献求助10
9秒前
9秒前
宇文雅琴完成签到,获得积分10
9秒前
迅速的鹤完成签到,获得积分10
10秒前
11秒前
Firmian发布了新的文献求助10
14秒前
冯尔蓝完成签到,获得积分10
14秒前
tammy完成签到,获得积分10
14秒前
lalala发布了新的文献求助10
14秒前
15秒前
月亮邮递员应助Guozixin采纳,获得50
15秒前
13633501455完成签到 ,获得积分10
16秒前
南倾发布了新的文献求助10
16秒前
17秒前
胡杨柳完成签到 ,获得积分10
17秒前
jiangchuansm完成签到,获得积分10
17秒前
李明月完成签到,获得积分10
17秒前
lalala发布了新的文献求助10
20秒前
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
22秒前
bian发布了新的文献求助30
23秒前
白江恒发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425872
求助须知:如何正确求助?哪些是违规求助? 4539598
关于积分的说明 14169356
捐赠科研通 4457359
什么是DOI,文献DOI怎么找? 2444499
邀请新用户注册赠送积分活动 1435428
关于科研通互助平台的介绍 1412877