SMWE-GFPNNet: A high-precision and robust method for forest fire smoke detection

烟雾 特征(语言学) 环境科学 火灾探测 卷积神经网络 提取器 遥感 人工智能 模式识别(心理学) 计算机科学 计算机视觉 地理 地质学 气象学 工程类 工艺工程 建筑工程 哲学 语言学
作者
Rui Li,Yaowen Hu,Lin Li,Renxiang Guan,Ruoli Yang,Jialei Zhan,Weiwei Cai,Yanfeng Wang,Haiwen Xu,Liujun Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:289: 111528-111528 被引量:10
标识
DOI:10.1016/j.knosys.2024.111528
摘要

Smoke is an early manifestation of forest fire. Accurate identification of smoke from forest fires is crucial for the prevention and control of forest fires, which helps protect the ecological environment and the safety of people. The texture features of smoke are complex and prone to detection omissions. The forest environment is complex, and smoke-like objects in the forest often interfere with smoke recognition. The concentration of smoke at the edge is thin, which easily leads to edge omission. In response to these problems, we propose a high-precision edge focused forest fire smoke detection network. To begin, in response to the problem of detection omission, we present a Swin multidimensional window extractor (SMWE) that enhances information exchange between windows in both horizontal and vertical dimensions to extract global texture features from images with smoke. Then, the guillotine feature pyramid network (GFPN) is suggested, along with a new guillotine convolution method for reducing redundant feature information from a feature fusion perspective, thereby improving the anti-interference ability of the model. Finally, taking into account the thinness and irregularity of the smoke near the borders, a contour adaptive loss function is suggested to minimize the boundary blur caused by down-sampling the feature map in the network. The experimental and application results show that SMWE-GFPNNet accomplishes 80.92 % of the mAP, 90.01 % of the mAP50, and 83.38 % of the mAP75 on the Forest Fire Smoke Complex Background Detection Dataset. Excellent in anti-interference ability and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怒发5篇sci完成签到,获得积分10
1秒前
ggjy完成签到,获得积分10
3秒前
全若之发布了新的文献求助10
4秒前
4秒前
5秒前
谦让含玉发布了新的文献求助10
5秒前
6秒前
8秒前
yqcsyyds发布了新的文献求助10
10秒前
澳大利亚完成签到,获得积分10
10秒前
11秒前
啧啧啧给啧啧啧的求助进行了留言
11秒前
11秒前
11秒前
希望天下0贩的0应助MIRROR采纳,获得10
12秒前
圣诞节完成签到,获得积分10
13秒前
14秒前
14秒前
无奈行恶应助稳重的寒梦采纳,获得20
15秒前
无奈行恶应助稳重的寒梦采纳,获得20
15秒前
wen发布了新的文献求助10
17秒前
17秒前
以行践言发布了新的文献求助10
17秒前
在水一方应助闺音采纳,获得10
20秒前
写得出发的中完成签到,获得积分10
20秒前
Chen272发布了新的文献求助10
20秒前
我要文献发布了新的文献求助10
21秒前
汉堡包应助frl采纳,获得10
22秒前
DK发布了新的文献求助10
22秒前
22秒前
旭晓完成签到 ,获得积分10
23秒前
23秒前
23秒前
wen关闭了wen文献求助
25秒前
26秒前
猫小树完成签到 ,获得积分10
26秒前
CipherSage应助考研小白采纳,获得10
28秒前
杨振发布了新的文献求助10
28秒前
BatFaith应助阿俊1212采纳,获得30
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425