SMWE-GFPNNet: A high-precision and robust method for forest fire smoke detection

烟雾 特征(语言学) 环境科学 火灾探测 卷积神经网络 提取器 遥感 人工智能 模式识别(心理学) 计算机科学 计算机视觉 地理 地质学 气象学 工程类 工艺工程 建筑工程 哲学 语言学
作者
Rui Li,Yaowen Hu,Lin Li,Renxiang Guan,Ruoli Yang,Jialei Zhan,Weiwei Cai,Yanfeng Wang,Haiwen Xu,Liujun Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111528-111528 被引量:19
标识
DOI:10.1016/j.knosys.2024.111528
摘要

Smoke is an early manifestation of forest fire. Accurate identification of smoke from forest fires is crucial for the prevention and control of forest fires, which helps protect the ecological environment and the safety of people. The texture features of smoke are complex and prone to detection omissions. The forest environment is complex, and smoke-like objects in the forest often interfere with smoke recognition. The concentration of smoke at the edge is thin, which easily leads to edge omission. In response to these problems, we propose a high-precision edge focused forest fire smoke detection network. To begin, in response to the problem of detection omission, we present a Swin multidimensional window extractor (SMWE) that enhances information exchange between windows in both horizontal and vertical dimensions to extract global texture features from images with smoke. Then, the guillotine feature pyramid network (GFPN) is suggested, along with a new guillotine convolution method for reducing redundant feature information from a feature fusion perspective, thereby improving the anti-interference ability of the model. Finally, taking into account the thinness and irregularity of the smoke near the borders, a contour adaptive loss function is suggested to minimize the boundary blur caused by down-sampling the feature map in the network. The experimental and application results show that SMWE-GFPNNet accomplishes 80.92 % of the mAP, 90.01 % of the mAP50, and 83.38 % of the mAP75 on the Forest Fire Smoke Complex Background Detection Dataset. Excellent in anti-interference ability and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想发sci发布了新的文献求助10
刚刚
姚哈哈完成签到 ,获得积分10
1秒前
大模型应助whqpeter采纳,获得10
3秒前
Changlu发布了新的文献求助10
3秒前
浮游应助Painkiller_采纳,获得10
5秒前
重要青柏完成签到,获得积分10
5秒前
Mh发布了新的文献求助10
5秒前
heyunxiang完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
王小明完成签到,获得积分10
8秒前
olivia完成签到,获得积分10
8秒前
wang完成签到,获得积分10
9秒前
小白鞋完成签到 ,获得积分10
10秒前
懦弱的博涛完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
淡淡的幻竹完成签到,获得积分10
13秒前
123456发布了新的文献求助10
13秒前
元骏发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
long0809完成签到,获得积分10
15秒前
bkagyin应助Unpaid采纳,获得10
16秒前
16秒前
奋斗的绝悟完成签到,获得积分10
17秒前
情怀应助Painkiller_采纳,获得10
18秒前
元骏发布了新的文献求助10
18秒前
元骏发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400