SMWE-GFPNNet: A high-precision and robust method for forest fire smoke detection

烟雾 特征(语言学) 环境科学 火灾探测 卷积神经网络 提取器 遥感 人工智能 模式识别(心理学) 计算机科学 计算机视觉 地理 地质学 气象学 工程类 工艺工程 建筑工程 哲学 语言学
作者
Rui Li,Yaowen Hu,Lin Li,Renxiang Guan,Ruoli Yang,Jialei Zhan,Weiwei Cai,Yanfeng Wang,Haiwen Xu,Liujun Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111528-111528 被引量:8
标识
DOI:10.1016/j.knosys.2024.111528
摘要

Smoke is an early manifestation of forest fire. Accurate identification of smoke from forest fires is crucial for the prevention and control of forest fires, which helps protect the ecological environment and the safety of people. The texture features of smoke are complex and prone to detection omissions. The forest environment is complex, and smoke-like objects in the forest often interfere with smoke recognition. The concentration of smoke at the edge is thin, which easily leads to edge omission. In response to these problems, we propose a high-precision edge focused forest fire smoke detection network. To begin, in response to the problem of detection omission, we present a Swin multidimensional window extractor (SMWE) that enhances information exchange between windows in both horizontal and vertical dimensions to extract global texture features from images with smoke. Then, the guillotine feature pyramid network (GFPN) is suggested, along with a new guillotine convolution method for reducing redundant feature information from a feature fusion perspective, thereby improving the anti-interference ability of the model. Finally, taking into account the thinness and irregularity of the smoke near the borders, a contour adaptive loss function is suggested to minimize the boundary blur caused by down-sampling the feature map in the network. The experimental and application results show that SMWE-GFPNNet accomplishes 80.92 % of the mAP, 90.01 % of the mAP50, and 83.38 % of the mAP75 on the Forest Fire Smoke Complex Background Detection Dataset. Excellent in anti-interference ability and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qi完成签到,获得积分10
刚刚
沈归尘发布了新的文献求助30
刚刚
商羽完成签到,获得积分10
1秒前
研友_ED5GK应助zxz采纳,获得10
2秒前
2秒前
3秒前
hkxfg发布了新的文献求助30
4秒前
4秒前
5秒前
花雨黎伞完成签到,获得积分10
5秒前
6秒前
搜集达人应助xwy采纳,获得10
6秒前
谨慎的雨琴完成签到,获得积分10
6秒前
lixiniverson完成签到 ,获得积分10
6秒前
DealTmy完成签到,获得积分10
9秒前
lailight完成签到,获得积分10
9秒前
1234567xjy发布了新的文献求助10
9秒前
六水居士发布了新的文献求助10
9秒前
怡然的月月子应助97采纳,获得10
10秒前
10秒前
绿色心情发布了新的文献求助30
10秒前
10秒前
善学以致用应助加菲丰丰采纳,获得10
10秒前
唠叨的山槐完成签到,获得积分10
10秒前
沈归尘完成签到,获得积分10
11秒前
搜集达人应助刘英俊采纳,获得10
11秒前
11秒前
summertrain发布了新的文献求助10
12秒前
13秒前
所所应助DealTmy采纳,获得10
13秒前
clueless完成签到,获得积分10
14秒前
陈印发布了新的文献求助10
14秒前
崔大胖发布了新的文献求助10
14秒前
14秒前
yang发布了新的文献求助30
15秒前
coolkid完成签到,获得积分10
15秒前
15秒前
CodeCraft应助赵云采纳,获得10
15秒前
大个应助小小怪国王采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449