Artificial intelligence applications in the diagnosis of gallbladder neoplasms through ultrasound: A review

超声波 计算机科学 胆囊 放射科 人工智能 医学 内科学
作者
Sara Dadjouy,Hedieh Sajedi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106149-106149 被引量:5
标识
DOI:10.1016/j.bspc.2024.106149
摘要

The occurrence of cancer in the gallbladder is infrequent. However, it is an aggressive disease that is often diagnosed at a late stage. Ultrasound imaging is a common first-line diagnostic tool for gallbladder diseases, but its accuracy relies on the expertise of the sonographer and the radiologist. The use of AI techniques, such as machine learning and deep learning, can enhance the diagnostic accuracy and efficiency from ultrasound imaging, serving as a supplementary diagnostic tool. This paper aims to address the existing gap in reviews on the application of AI in diagnosing gallbladder malignancies using ultrasound images. It provides insights into current trends in this field and suggests directions for future research. From the reviewed studies, it appears that despite the promising results, several challenges persist. These include the lack of large and comprehensive datasets, scarcity of publicly available datasets, and questions regarding the robustness, generality and reliability of AI models, which affect the models' practicality. In addition, the YOLOv8 model is evaluated as the object detector in the methodology pipeline of one of the reviewed papers. A fusion method that combines the bounding boxes of Faster R-CNN and YOLOv8, leveraging the benefits of both techniques, is also presented. By using the bounding boxes from the proposed fusion method, superior classification performance was obtained with an accuracy of 92.62%. This outperformed the individual use of Faster R-CNN and YOLOv8, which yielded accuracies of 90.16% and 82.79%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lala发布了新的文献求助10
刚刚
1秒前
李二狗发布了新的文献求助10
1秒前
2秒前
bkagyin应助tay采纳,获得10
3秒前
六十一发布了新的文献求助10
3秒前
如意天荷完成签到,获得积分10
3秒前
leiiiiiiii完成签到,获得积分10
4秒前
4秒前
Hello应助柿子采纳,获得30
5秒前
Zzz发布了新的文献求助10
5秒前
6秒前
xmmm完成签到,获得积分10
7秒前
Hello应助纯真穆采纳,获得10
7秒前
香蕉觅云应助斯文明杰采纳,获得10
8秒前
8秒前
张钦奎完成签到,获得积分10
8秒前
10秒前
迅速曼冬完成签到 ,获得积分10
10秒前
cnbhhhhh完成签到,获得积分10
12秒前
61发布了新的文献求助10
12秒前
li发布了新的文献求助200
13秒前
13秒前
六十一完成签到,获得积分10
14秒前
14秒前
mk完成签到,获得积分10
14秒前
科研通AI5应助天真咖啡豆采纳,获得10
14秒前
球球的铲屎官完成签到,获得积分10
15秒前
算命先生完成签到,获得积分10
15秒前
白茶发布了新的文献求助10
16秒前
kuangweiming完成签到 ,获得积分10
17秒前
Chemisboy发布了新的文献求助20
18秒前
Hello应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得20
18秒前
科目三应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732259
求助须知:如何正确求助?哪些是违规求助? 3276573
关于积分的说明 9997657
捐赠科研通 2992083
什么是DOI,文献DOI怎么找? 1642008
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701