Exploring Point-BEV Fusion for 3D Point Cloud Object Tracking with Transformer

计算机视觉 人工智能 点云 计算机科学 融合 视频跟踪 跟踪(教育) 对象(语法) 心理学 教育学 哲学 语言学
作者
Zhipeng Luo,Changqing Zhou,Liang Pan,Gongjie Zhang,Tianrui Liu,Yueru Luo,Haiyu Zhao,Ziwei Liu,Shijian Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 5921-5935 被引量:4
标识
DOI:10.1109/tpami.2024.3373693
摘要

With the prevalent use of LiDAR sensors in autonomous driving, 3D point cloud object tracking has received increasing attention. In a point cloud sequence, 3D object tracking aims to predict the location and orientation of an object in consecutive frames. Motivated by the success of transformers, we propose P oint T racking TR ansformer (PTTR), which efficiently predicts high-quality 3D tracking results in a coarse-to-fine manner with the help of transformer operations. PTTR consists of three novel designs. 1) Instead of random sampling, we design Relation-Aware Sampling to preserve relevant points to the given template during subsampling. 2) We propose a Point Relation Transformer for effective feature aggregation and feature matching between the template and search region. 3) Based on the coarse tracking results, we employ a novel Prediction Refinement Module to obtain the final refined prediction through local feature pooling. In addition, motivated by the favorable properties of the Bird's-Eye View (BEV) of point clouds in capturing object motion, we further design a more advanced framework named PTTR++, which incorporates both the point-wise view and BEV representation to exploit their complementary effect in generating high-quality tracking results. PTTR++ substantially boosts the tracking performance on top of PTTR with low computational overhead. Extensive experiments over multiple datasets show that our proposed approaches achieve superior 3D tracking accuracy and efficiency. Code will be available at https://github.com/Jasonkks/PTTR
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助勤劳冥采纳,获得10
3秒前
广隶发布了新的文献求助10
3秒前
所所应助ainikiki采纳,获得10
4秒前
隐形曼青应助hay采纳,获得10
9秒前
今后应助lanrangg采纳,获得10
9秒前
雪晴发布了新的文献求助20
9秒前
10秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
111应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
干物肥宅完成签到,获得积分10
11秒前
慕青应助科研通管家采纳,获得50
11秒前
Lucas应助科研通管家采纳,获得20
11秒前
慕青应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助Jane采纳,获得10
12秒前
13秒前
广隶完成签到,获得积分10
13秒前
14秒前
朴素访琴完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
chri发布了新的文献求助10
18秒前
liufang完成签到,获得积分10
19秒前
允初发布了新的文献求助10
20秒前
hay发布了新的文献求助10
20秒前
Owen应助李敏之采纳,获得10
21秒前
HY发布了新的文献求助10
21秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112