Exploring Point-BEV Fusion for 3D Point Cloud Object Tracking with Transformer

计算机视觉 人工智能 点云 计算机科学 融合 视频跟踪 跟踪(教育) 对象(语法) 心理学 教育学 哲学 语言学
作者
Zhipeng Luo,Changqing Zhou,Liang Pan,Gongjie Zhang,Tianrui Liu,Yueru Luo,Haiyu Zhao,Ziwei Liu,Shijian Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 5921-5935 被引量:5
标识
DOI:10.1109/tpami.2024.3373693
摘要

With the prevalent use of LiDAR sensors in autonomous driving, 3D point cloud object tracking has received increasing attention. In a point cloud sequence, 3D object tracking aims to predict the location and orientation of an object in consecutive frames. Motivated by the success of transformers, we propose Point Tracking TRansformer (PTTR), which efficiently predicts high-quality 3D tracking results in a coarse-to-fine manner with the help of transformer operations. PTTR consists of three novel designs. 1) Instead of random sampling, we design Relation-Aware Sampling to preserve relevant points to the given template during subsampling. 2) We propose a Point Relation Transformer for effective feature aggregation and feature matching between the template and search region. 3) Based on the coarse tracking results, we employ a novel Prediction Refinement Module to obtain the final refined prediction through local feature pooling. In addition, motivated by the favorable properties of the Bird's-Eye View (BEV) of point clouds in capturing object motion, we further design a more advanced framework named PTTR++, which incorporates both the point-wise view and BEV representation to exploit their complementary effect in generating high-quality tracking results. PTTR++ substantially boosts the tracking performance on top of PTTR with low computational overhead. Extensive experiments over multiple datasets show that our proposed approaches achieve superior 3D tracking accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OKYT发布了新的文献求助10
1秒前
Evina给编号9527的求助进行了留言
1秒前
烟花应助ww417采纳,获得30
1秒前
1秒前
1秒前
在水一方应助dignity采纳,获得30
3秒前
lcm完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
Vv完成签到,获得积分10
4秒前
emgauemmeo完成签到,获得积分20
4秒前
英姑应助ln采纳,获得10
4秒前
4秒前
领导范儿应助大凯采纳,获得10
4秒前
季子超发布了新的文献求助10
4秒前
Zx_1993应助alicealike采纳,获得10
4秒前
思源应助鱼骨头采纳,获得10
5秒前
羊羊耶完成签到,获得积分10
5秒前
鬼鬼鼠鼠偷番薯完成签到,获得积分10
5秒前
5秒前
6秒前
天空完成签到 ,获得积分10
6秒前
尘扬发布了新的文献求助10
6秒前
7秒前
qqq发布了新的文献求助10
7秒前
李禾和完成签到,获得积分10
8秒前
8秒前
本征值完成签到 ,获得积分10
8秒前
8秒前
薛迎春发布了新的文献求助10
8秒前
爱狗人士Hito完成签到,获得积分10
8秒前
9秒前
可可发布了新的文献求助50
9秒前
maxilily完成签到,获得积分20
9秒前
zhouyane完成签到,获得积分10
9秒前
10秒前
无极微光应助张天泽采纳,获得30
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372