Modeling streamflow in non-gauged watersheds with sparse data considering physiographic, dynamic climate, and anthropogenic factors using explainable soft computing techniques

水流 环境科学 水文学(农业) 气候学 地质学 流域 地理 地图学 岩土工程
作者
Charuni I. Madhushani,K. G. S. Dananjaya,I.U. Ekanayake,D.P.P. Meddage,Komali Kantamaneni,Upaka Rathnayake
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130846-130846 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130846
摘要

Streamflow forecasting is essential for effective water resource planning and early warning systems. Streamflow and related parameters are often characterized by uncertainties and complex behaviors. Recent studies have turned to machine learning (ML) to predict streamflow. However, many of these methods have overlooked the interpretability and causality of their predictions, which undermine the confidence of end-users in the reliability of machine learning. Besides, non-gauged basins have been receiving more attention due to the inherent risks involved in streamflow prediction. This study aims to overcome these limitations by utilizing ML to model streamflow in a non-gauged basin using anthropogenic, static physiographic, and dynamic climate variables, while also providing interpretability through the use of Shapley Additive Explanations (SHAP). Four ML algorithms were employed in this study, including Histogram Gradient Boosting (HGB), Extreme Gradient Boosting (XGB), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) to forecast streamflow. XGB outperformed the other models with a correlation coefficient (R) of 0.91 for training and 0.884 for testing, along with mean absolute errors (MAE) of 0.02 for training and 0.023 for testing. Significantly, the use of SHAP provided insights into the inner workings of XGB predictions, revealing how these predictions are made. SHAP provides the feature importance, interactions among features, and dependencies. This explainable model (SHAP) is an invaluable addition to ML-based streamflow predictions and early warning systems, offering human-comprehensible interpretations. The findings of this study are specially imperative to manage flood risk factors in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shw发布了新的文献求助30
刚刚
x1完成签到,获得积分10
刚刚
英俊的铭应助pophoo采纳,获得10
1秒前
刘莅完成签到 ,获得积分10
2秒前
一杯完成签到,获得积分10
3秒前
lyjj023发布了新的文献求助30
3秒前
21完成签到,获得积分10
5秒前
5秒前
阿莫西林完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
11秒前
klp335完成签到,获得积分10
11秒前
x1发布了新的文献求助10
11秒前
12秒前
格子布发布了新的文献求助10
12秒前
郑绒绒完成签到 ,获得积分10
13秒前
yjchenf完成签到 ,获得积分10
14秒前
14秒前
顾矜应助王4采纳,获得10
15秒前
17秒前
ylc发布了新的文献求助10
18秒前
lyjj023发布了新的文献求助10
18秒前
幸福语儿发布了新的文献求助30
18秒前
畅快幻柏发布了新的文献求助20
19秒前
太阳完成签到,获得积分10
20秒前
23秒前
24秒前
24秒前
Akim应助格子布采纳,获得10
24秒前
深情安青应助怕黑月光采纳,获得10
25秒前
碘伏完成签到 ,获得积分10
25秒前
26秒前
12345678完成签到,获得积分10
26秒前
28秒前
畅快幻柏完成签到,获得积分20
30秒前
33秒前
34秒前
haikuotian应助畅快幻柏采纳,获得20
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237