Hyperbolic Node Structural Role Embedding

节点(物理) 计算机科学 嵌入 人工智能 工程类 结构工程
作者
Lili Wang,Cheng‐Han Huang,Weicheng Ma,Zhongyang Li,Soroush Vosoughi
标识
DOI:10.1109/icdmw60847.2023.00152
摘要

Hyperbolic space has been shown to be able to naturally reflect the properties of complex networks that exhibit hierarchical structure. This has led to the development of a number of hyperbolic network representation learning methods which have been shown to be on average superior to the more traditional network representation learning in Euclidean space. The main focus of existing hyperbolic network embedding methods has been local (i.e., microscopic) node embedding. That is, learning node embeddings based on their local neighborhood. Work on hyperbolic network embedding has so far not investigated hyperbolic node structural role embedding (i.e., macroscopic embedding). That is, learning node embeddings based on their structural roles.In this work, we attempt to address this gap by extending two commonly used methods used for Euclidean structural role embedding–Random walk and Matrix factorization–to perform structural role embedding in hyperbolic space. Specifically, we show how Euclidean structural role embeddings methods utilizing these methods can be moved into hyperbolic space. Experiments on several real-world and synthetic networks show that our structural role embedding methods in hyperbolic space achieve better results than their Euclidean counterparts, with one of our methods outperforming the current state-of-the-art. Our results add further support to the growing body of literature that show that hyperbolic space is more effective than Euclidean space for graph representation learning, specifically in our case, node structural role representations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助30
3秒前
Phd侯发布了新的文献求助30
4秒前
科研通AI2S应助科学家采纳,获得10
6秒前
Owen应助静心采纳,获得10
6秒前
6秒前
7秒前
8秒前
搜集达人应助丸太子采纳,获得10
8秒前
YBY完成签到 ,获得积分10
10秒前
赵怡宁发布了新的文献求助10
12秒前
XXXten完成签到 ,获得积分10
13秒前
田様应助犹豫山河采纳,获得10
13秒前
徐rl完成签到 ,获得积分10
14秒前
冷酷芝完成签到,获得积分10
14秒前
Phd侯完成签到,获得积分20
16秒前
英姑应助lkx采纳,获得10
16秒前
CodeCraft应助耍酷的宛秋采纳,获得10
16秒前
17秒前
Yohann完成签到 ,获得积分10
18秒前
万能图书馆应助qlwko采纳,获得10
20秒前
天天玩完成签到,获得积分10
22秒前
慢歌完成签到 ,获得积分10
22秒前
emergency完成签到,获得积分10
24秒前
犹豫山河发布了新的文献求助10
25秒前
25秒前
30秒前
30秒前
lkx发布了新的文献求助10
30秒前
32秒前
32秒前
烟花应助kcul采纳,获得10
32秒前
踏实凡梦完成签到 ,获得积分10
33秒前
77发布了新的文献求助10
34秒前
互助遵法尚德应助十公里采纳,获得10
35秒前
dmr完成签到,获得积分10
35秒前
神勇乐曲发布了新的文献求助10
35秒前
ZYN完成签到,获得积分10
35秒前
36秒前
一江风入松完成签到,获得积分10
36秒前
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760