作者
Ilya Tsukalov,Ildefonso Sánchez‐Cerrillo,Olga Rajas,Elena Ávalos,Gorane Iturricastillo,Laura Esparcia,María J. Buzón,Meritxell Genescà,Camila Scagnetti,O. V. Popova,Noa B. Martín‐Cófreces,Marta Calvet‐Mirabent,Ana Marcos‐Jiménez,Pedro Martínez‐Fleta,Cristina Delgado‐Arévalo,Ignacio de los Santos,Cecilia Muñoz‐Calleja,Marı́a J. Calzada,Isidoro González‐Álvaro,J. Palacios-Calvo,Arántzazu Alfranca,Julio Ancochea,Francisco Sánchez‐Madrid,Enrique Martín‐Gayo
摘要
Abstract Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.