Deep learning-based multimodel prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study

医学 肾细胞癌 肾透明细胞癌 辅助治疗 队列 疾病 比例危险模型 肿瘤科 放射科 内科学 生存分析 癌症
作者
Siteng Chen,Feng Gao,Tuanjie Guo,Liren Jiang,Ning Zhang,Xiang Wang,Junhua Zheng
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (5): 2970-2977
标识
DOI:10.1097/js9.0000000000001222
摘要

Background: Although separate analysis of individual factor can somewhat improve the prognostic performance, integration of multimodal information into a single signature is necessary to stratify patients with clear cell renal cell carcinoma (ccRCC) for adjuvant therapy after surgery. Methods: A total of 414 patients with whole slide images, computed tomography images, and clinical data from three patient cohorts were retrospectively analyzed. The authors performed deep learning and machine learning algorithm to construct three single-modality prediction models for disease-free survival of ccRCC based on whole slide images, cell segmentation, and computed tomography images, respectively. A multimodel prediction signature (MMPS) for disease-free survival were further developed by combining three single-modality prediction models and tumor stage/grade system. Prognostic performance of the prognostic model was also verified in two independent validation cohorts. Results: Single-modality prediction models performed well in predicting the disease-free survival status of ccRCC. The MMPS achieved higher area under the curve value of 0.742, 0.917, and 0.900 in three independent patient cohorts, respectively. MMPS could distinguish patients with worse disease-free survival, with HR of 12.90 (95% CI: 2.443–68.120, P <0.0001), 11.10 (95% CI: 5.467–22.520, P <0.0001), and 8.27 (95% CI: 1.482–46.130, P <0.0001) in three different patient cohorts. In addition, MMPS outperformed single-modality prediction models and current clinical prognostic factors, which could also provide complements to current risk stratification for adjuvant therapy of ccRCC. Conclusion: Our novel multimodel prediction analysis for disease-free survival exhibited significant improvements in prognostic prediction for patients with ccRCC. After further validation in multiple centers and regions, the multimodal system could be a potential practical tool for clinicians in the treatment for ccRCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助水牛采纳,获得10
1秒前
3秒前
5秒前
WW完成签到,获得积分10
5秒前
稳重的闭月完成签到,获得积分10
5秒前
guo完成签到,获得积分10
6秒前
9秒前
Dai完成签到,获得积分10
10秒前
Rarity发布了新的文献求助10
11秒前
thchiang完成签到 ,获得积分10
11秒前
yls完成签到,获得积分10
11秒前
欣怡完成签到 ,获得积分10
11秒前
11秒前
12秒前
忆之完成签到,获得积分10
13秒前
汤汤完成签到,获得积分10
14秒前
小李完成签到 ,获得积分20
15秒前
16秒前
16秒前
大柒发布了新的文献求助100
16秒前
Bazinga完成签到,获得积分10
16秒前
16秒前
卡牌大师完成签到,获得积分10
17秒前
学术渣完成签到 ,获得积分10
17秒前
Jasper应助蛋壳柯采纳,获得10
18秒前
HHH发布了新的文献求助10
19秒前
21秒前
凡仔发布了新的文献求助10
22秒前
22秒前
lucky发布了新的文献求助10
22秒前
天天快乐应助HHH采纳,获得10
24秒前
楠瓜发布了新的文献求助10
27秒前
YX完成签到,获得积分20
27秒前
2224536完成签到,获得积分10
27秒前
27秒前
28秒前
科研通AI2S应助凡仔采纳,获得10
29秒前
2224536发布了新的文献求助30
31秒前
慕青应助YX采纳,获得10
31秒前
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194