Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study

医学 肾细胞癌 肾透明细胞癌 辅助治疗 队列 疾病 比例危险模型 肿瘤科 放射科 内科学 生存分析 癌症
作者
Siteng Chen,Feng Gao,Tuanjie Guo,Liren Jiang,Ning Zhang,Xiang Wang,Junhua Zheng
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:4
标识
DOI:10.1097/js9.0000000000001222
摘要

Background: Although separate analysis of individual factor can somewhat improve the prognostic performance, integration of multimodal information into a single signature is necessary to stratify patients with clear cell renal cell carcinoma (ccRCC) for adjuvant therapy after surgery. Methods: A total of 414 patients with whole slide images, computed tomography images, and clinical data from three patient cohorts were retrospectively analyzed. The authors performed deep learning and machine learning algorithm to construct three single-modality prediction models for disease-free survival of ccRCC based on whole slide images, cell segmentation, and computed tomography images, respectively. A multimodel prediction signature (MMPS) for disease-free survival were further developed by combining three single-modality prediction models and tumor stage/grade system. Prognostic performance of the prognostic model was also verified in two independent validation cohorts. Results: Single-modality prediction models performed well in predicting the disease-free survival status of ccRCC. The MMPS achieved higher area under the curve value of 0.742, 0.917, and 0.900 in three independent patient cohorts, respectively. MMPS could distinguish patients with worse disease-free survival, with HR of 12.90 (95% CI: 2.443–68.120, P <0.0001), 11.10 (95% CI: 5.467–22.520, P <0.0001), and 8.27 (95% CI: 1.482–46.130, P <0.0001) in three different patient cohorts. In addition, MMPS outperformed single-modality prediction models and current clinical prognostic factors, which could also provide complements to current risk stratification for adjuvant therapy of ccRCC. Conclusion: Our novel multimodel prediction analysis for disease-free survival exhibited significant improvements in prognostic prediction for patients with ccRCC. After further validation in multiple centers and regions, the multimodal system could be a potential practical tool for clinicians in the treatment for ccRCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化悲愤高压完成签到,获得积分20
刚刚
wzy关闭了wzy文献求助
1秒前
1秒前
mimosal发布了新的文献求助10
1秒前
大胖小子发布了新的文献求助10
2秒前
ding应助xiaosu采纳,获得30
3秒前
三七发布了新的文献求助30
3秒前
ding应助hugdoggy采纳,获得10
4秒前
搜集达人应助鲁西西采纳,获得10
4秒前
4秒前
Chenmd2001完成签到,获得积分10
4秒前
短短发布了新的文献求助10
5秒前
YHHHH应助伯赏秋白采纳,获得10
5秒前
李华发布了新的文献求助10
6秒前
Lu完成签到,获得积分10
6秒前
YuchaoJia发布了新的文献求助10
6秒前
wanci应助Sunflower采纳,获得10
8秒前
9秒前
YHHHH应助伯赏秋白采纳,获得10
9秒前
9秒前
orixero应助李lj采纳,获得10
10秒前
大个应助三七采纳,获得10
12秒前
guons发布了新的文献求助10
13秒前
13秒前
彭于晏应助chang采纳,获得10
13秒前
ccc完成签到 ,获得积分10
14秒前
14秒前
搜集达人应助祖安露采纳,获得10
15秒前
冷酷馒头发布了新的文献求助10
15秒前
baiquanci完成签到 ,获得积分10
15秒前
ziyetong发布了新的文献求助30
15秒前
orixero应助Sunflower采纳,获得10
16秒前
hugdoggy发布了新的文献求助10
17秒前
CodeCraft应助Chen采纳,获得10
18秒前
ED应助zhy采纳,获得10
18秒前
Krystal完成签到,获得积分10
18秒前
微笑焱彬发布了新的文献求助10
18秒前
zhang发布了新的文献求助10
19秒前
科目三应助一定行采纳,获得10
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352