ECPC-IDS: A benchmark endometrial cancer PET/CT image dataset for evaluation of semantic segmentation and detection of hypermetabolic regions

计算机科学 分割 人工智能 子宫内膜癌 深度学习 模式识别(心理学) 癌症 医学 内科学
作者
Dechao Tang,Chen Li,Tianmin Du,Huiyan Jiang,Deguo Ma,Zhiyu Ma,Marcin Grzegorzek,Tao Jiang,Hongzan Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108217-108217 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108217
摘要

Endometrial cancer is one of the most common tumors in the female reproductive system and is the third most common gynecological malignancy that causes death after ovarian and cervical cancer. Early diagnosis can significantly improve the 5-year survival rate of patients. With the development of artificial intelligence, computer-assisted diagnosis plays an increasingly important role in improving the accuracy and objectivity of diagnosis and reducing the workload of doctors. However, the absence of publicly available image datasets restricts the application of computer-assisted diagnostic techniques. In this paper, a publicly available Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically, the segmentation section includes PET and CT images, with 7159 images in multiple formats totally. In order to prove the effectiveness of segmentation on ECPC-IDS, six deep learning semantic segmentation methods are selected to test the image segmentation task. The object detection section also includes PET and CT images, with 3579 images and XML files with annotation information totally. Eight deep learning methods are selected for experiments on the detection task. This study is conduct using deep learning-based semantic segmentation and object detection methods to demonstrate the distinguishability on ECPC-IDS. From a separate perspective, the minimum and maximum values of Dice on PET images are 0.546 and 0.743, respectively. The minimum and maximum values of Dice on CT images are 0.012 and 0.510, respectively. The target detection section's maximum mAP values on PET and CT images are 0.993 and 0.986, respectively. As far as we know, this is the first publicly available dataset of endometrial cancer with a large number of multi-modality images. ECPC-IDS can assist researchers in exploring new algorithms to enhance computer-assisted diagnosis, benefiting both clinical doctors and patients. ECPC-IDS is also freely published for non-commercial at: https://figshare.com/articles/dataset/ECPC-IDS/23808258.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121发布了新的文献求助10
2秒前
大猫爬树完成签到,获得积分10
3秒前
可靠的冰烟完成签到,获得积分10
3秒前
Ruuo616完成签到 ,获得积分10
5秒前
科研通AI2S应助Ashley采纳,获得10
5秒前
genomed完成签到,获得积分0
5秒前
6秒前
细心的紫丝完成签到,获得积分10
10秒前
逃跑的想表白的你猜完成签到,获得积分10
10秒前
旧楹联y完成签到,获得积分20
13秒前
Hello应助adinike采纳,获得10
15秒前
17秒前
传奇3应助WQY采纳,获得10
17秒前
121完成签到,获得积分10
18秒前
19秒前
小吴完成签到,获得积分10
22秒前
Forest完成签到,获得积分10
23秒前
23秒前
HHHH完成签到,获得积分10
26秒前
26秒前
不知道完成签到,获得积分10
28秒前
LZJ完成签到,获得积分10
29秒前
彭于晏应助研友_LjDyNZ采纳,获得20
30秒前
32秒前
32秒前
Ava应助白蓝采纳,获得10
32秒前
focus完成签到 ,获得积分10
33秒前
HR112应助zhikaiyici采纳,获得20
37秒前
脑洞疼应助夏天采纳,获得200
38秒前
40秒前
44秒前
44秒前
45秒前
GSQ完成签到,获得积分10
47秒前
samuel发布了新的文献求助10
47秒前
白蓝发布了新的文献求助10
49秒前
RJ发布了新的文献求助10
50秒前
Ashley完成签到,获得积分10
52秒前
52秒前
psy发布了新的文献求助10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810718
关于积分的说明 7889262
捐赠科研通 2469826
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012