亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibrating Deep Learning-based Code Smell Detection using Human Feedback

代码气味 计算机科学 编码(集合论) 基线(sea) 背景(考古学) 深度学习 人工智能 容器(类型理论) 软件 软件质量 机器学习 人机交互 软件开发 工程类 程序设计语言 机械工程 古生物学 海洋学 集合(抽象数据类型) 生物 地质学
作者
Himesh Nanadani,Mootez Saad,Tushar Sharma
标识
DOI:10.1109/scam59687.2023.00015
摘要

Code smells are inherently subjective in nature. Software developers may have different opinions and perspectives on smelly code. While many attempts have been made to use deep learning-based models for code smell detection, they fail to consider each developer's subjective perspective while detecting smells. Ignoring this aspect defies the purpose of using deep learning-based smell detection methods because the models are not customized to the developer's context. This paper proposes a method that considers human feedback to account for such subjectivity. Towards this, we created a plugin for IntelliJ IDEA and developed a container-based web-server to offer services of our baseline deep learning model. The setup allowed developers to see code smells within the IDE and provide feedback. Using this setup, we conducted a controlled experiment with 14 participants divided into experimental and control groups. In the first round of our experiment, we show code smells predicted using the baseline deep learning model and collect feedback from the participants. In the second round, we fine-tune the model based on the experimental group's feedback and reevaluate its performance before and after adjustment. Our results show that using such calibration improves the performance of the smell detection model by 15.49% in F1 score on average across the participants of the experimental group. Our work carries implications for both researchers and practitioners. Practitioners can apply our approach to enhance the quality of their code in day-to-day development activities, aligning it with their own code smell definitions. Furthermore, software engineering researchers can leverage this study to adopt analogous approaches for addressing similar issues, including code review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多摩川的烟花少年完成签到,获得积分10
2秒前
10秒前
10秒前
HS完成签到,获得积分10
15秒前
hyde完成签到,获得积分10
19秒前
25秒前
健壮的花瓣完成签到 ,获得积分10
35秒前
47秒前
54秒前
psypsy应助惠民采纳,获得20
55秒前
早晚完成签到 ,获得积分10
57秒前
biebie发布了新的文献求助10
1分钟前
1分钟前
乐观鱼发布了新的文献求助10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
Darcy应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
沉默的冬寒完成签到 ,获得积分10
1分钟前
Costing完成签到 ,获得积分10
1分钟前
1分钟前
感动白开水完成签到,获得积分10
1分钟前
2分钟前
惠民发布了新的文献求助20
2分钟前
凡是凡是发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
细腻梦安完成签到,获得积分10
2分钟前
枕风完成签到,获得积分20
2分钟前
伊笙完成签到 ,获得积分10
3分钟前
枕风发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
Darcy应助科研通管家采纳,获得30
3分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774