DERnet: a deep neural network for end-to-end reconstruction in magnetic particle imaging

计算机科学 噪音(视频) 迭代重建 正规化(语言学) 人工智能 降噪 先验概率 磁粉成像 干扰(通信) 信号重构 反问题 计算机视觉 模式识别(心理学) 算法 信号处理 图像(数学) 贝叶斯概率 数学 电信 频道(广播) 数学分析 磁性纳米粒子 纳米颗粒 纳米技术 材料科学 雷达
作者
Zhengyao Peng,Lin Yin,Zewen Sun,Qian Liang,Xin Ma,Yu An,Jie Tian,Yang Du
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad13cf
摘要

Abstract Objective: Magnetic particle imaging (MPI) shows potential for contributing to biomedical research and clinical practice. However, MPI images are effectively affected by noise in the signal as its reconstruction is an ill-posed inverse problem. Thus, effective reconstruction method is required to reduce the impact of the noise while mapping signals to MPI images. Traditional methods rely on the hand-crafted data-consistency (DC) term and regularization term based on spatial priors to achieve noise-reducing and reconstruction. While these methods alleviate the ill-posedness and reduce noise effects, they may be difficult to fully capture spatial features. Approach: In this study, we propose a deep neural network for end-to-end reconstruction (DERnet) in MPI that emulates the DC term and regularization term using the feature mapping subnetwork and post-processing subnetwork, respectively, but in a data-driven manner. By doing so, DERnet can better capture signal and spatial features without relying on hand-crafted priors and strategies, thereby effectively reducing noise interference and achieving superior reconstruction quality. Main Results: Our data-driven method outperforms the state-of-the-art algorithms with an improvement of 0.9-8.8dB in terms of peak signal-to-noise ratio under various noise levels. The result demonstrates the advantages of our approach in suppressing noise interference. Furthermore, DERnet can be employed for measured data reconstruction with improved fidelity and reduced noise. In conclusion, our proposed method offers performance benefits in reducing noise interference and enhancing reconstruction quality by effectively capturing signal and spatial features. Significance: DERnet is a promising candidate method to improve MPI reconstruction performance and facilitate its more in-depth biomedical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Master发布了新的文献求助10
刚刚
1秒前
隐形曼青应助wuji采纳,获得10
2秒前
张雨露完成签到 ,获得积分10
2秒前
3秒前
隐形曼青应助YLQ采纳,获得10
4秒前
火狐狸kc完成签到 ,获得积分10
4秒前
SW完成签到,获得积分10
5秒前
5秒前
orixero应助淡淡的纸鹤采纳,获得10
6秒前
7秒前
7秒前
庞贝完成签到,获得积分10
7秒前
隐形曼青应助龙傲天采纳,获得10
8秒前
Wish发布了新的文献求助20
9秒前
9秒前
10秒前
仇湘完成签到,获得积分10
10秒前
10秒前
慕青应助cc采纳,获得10
10秒前
miemie66发布了新的文献求助10
11秒前
wkl发布了新的文献求助30
11秒前
zhu完成签到,获得积分10
11秒前
CipherSage应助小六六采纳,获得10
12秒前
13秒前
酷酷听安发布了新的文献求助10
13秒前
14秒前
haha完成签到,获得积分10
14秒前
深情安青应助kk采纳,获得10
14秒前
pengpei完成签到,获得积分10
15秒前
猴子魏完成签到,获得积分10
15秒前
15秒前
15秒前
genova发布了新的文献求助10
16秒前
甜甜的大米完成签到,获得积分10
16秒前
16秒前
打打应助陈柚子采纳,获得10
17秒前
ying发布了新的文献求助10
17秒前
17秒前
Sy0v0发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 990
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
A Simple Constitutive Description for Cellular Concrete 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3395223
求助须知:如何正确求助?哪些是违规求助? 3005290
关于积分的说明 8816873
捐赠科研通 2692028
什么是DOI,文献DOI怎么找? 1474664
科研通“疑难数据库(出版商)”最低求助积分说明 682018
邀请新用户注册赠送积分活动 675186