Machine learning aided computational exploration of metal–organic frameworks with open Cu sites for the effective separation of hydrogen isotopes

可转让性 计算机科学 金属有机骨架 吸附 分离(统计) 特征(语言学) 人工智能 机器学习 纳米技术 材料科学 化学 语言学 哲学 罗伊特 有机化学
作者
Yanling Chen,Yunpan Ying,Yizhen Situ,Wenxuan Li,Jiahao Ren,Tongan Yan,Qingyuan Yang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:334: 126001-126001 被引量:6
标识
DOI:10.1016/j.seppur.2023.126001
摘要

Efficient separation of hydrogen isotopes is of vital importance to develop nuclear energy industry, while it remains a significant challenge to separate D2 from H2 due to their identical physicochemical properties. As one of the efficient alternatives to conventional techniques, the thermodynamic quantum sieving technology using metal–organic frameworks (MOFs) featuring open metal sites (OMSs) has shown a great potential. However, the lack of transferable force fields in conventional molecular simulations and high expense of brute-force screening hinder the quick discovery of MOFs targeted for D2/H2 separation. Herein, based on the established force field with high accuracy and transferability, machine learning and feature engineering are applied to address these challenges. Machine learning comprehensively assesses different descriptors that influence the separation performance of 929 experimentally-reported MOFs bearing Cu(II)-OMS. By employing the same metal nodes, new Cu MOF database (6,748 MOFs) is constructed, in which 45 hypothetical MOFs are firstly identified out through feature engineering that exhibiting high performance. Furthermore, grand canonical Monte Carlo simulations are performed on these MOFs, among which the optimal one exhibits comparable selectivity (36.9) and high adsorbent performance score (315.9) that surpasses the state-of-the-art materials do. This work not only presents a cost-effective approach firstly applying in the separation of hydrogen isotopes, but also provides experimental guidance for the design of high-performance adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助JJJ采纳,获得10
1秒前
1秒前
jf关注了科研通微信公众号
2秒前
金条完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
要减肥白开水完成签到,获得积分10
5秒前
ChristineJay完成签到,获得积分10
5秒前
20010完成签到,获得积分10
6秒前
SixDogs发布了新的文献求助13
7秒前
7秒前
搞笑地雷完成签到 ,获得积分10
7秒前
11完成签到,获得积分10
8秒前
贺格平发布了新的文献求助10
8秒前
小董完成签到,获得积分20
11秒前
BENpao123发布了新的文献求助10
11秒前
所所应助无问西东采纳,获得10
12秒前
12秒前
13秒前
bombing2048完成签到 ,获得积分10
14秒前
Hello应助谦让寄容采纳,获得10
14秒前
香蕉觅云应助Wenyilong采纳,获得10
14秒前
16秒前
lml发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
刻苦秋尽完成签到,获得积分20
17秒前
空白发布了新的文献求助10
17秒前
justin完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
科研通AI6应助lex采纳,获得10
19秒前
20秒前
Darius发布了新的文献求助10
21秒前
21秒前
CodeCraft应助现代芷波采纳,获得10
21秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648