可转让性
计算机科学
金属有机骨架
吸附
分离(统计)
氢
特征(语言学)
人工智能
机器学习
纳米技术
材料科学
化学
语言学
哲学
罗伊特
有机化学
作者
Yanling Chen,Yunpan Ying,Yizhen Situ,Wenxuan Li,Jiahao Ren,Tongan Yan,Qingyuan Yang
标识
DOI:10.1016/j.seppur.2023.126001
摘要
Efficient separation of hydrogen isotopes is of vital importance to develop nuclear energy industry, while it remains a significant challenge to separate D2 from H2 due to their identical physicochemical properties. As one of the efficient alternatives to conventional techniques, the thermodynamic quantum sieving technology using metal–organic frameworks (MOFs) featuring open metal sites (OMSs) has shown a great potential. However, the lack of transferable force fields in conventional molecular simulations and high expense of brute-force screening hinder the quick discovery of MOFs targeted for D2/H2 separation. Herein, based on the established force field with high accuracy and transferability, machine learning and feature engineering are applied to address these challenges. Machine learning comprehensively assesses different descriptors that influence the separation performance of 929 experimentally-reported MOFs bearing Cu(II)-OMS. By employing the same metal nodes, new Cu MOF database (6,748 MOFs) is constructed, in which 45 hypothetical MOFs are firstly identified out through feature engineering that exhibiting high performance. Furthermore, grand canonical Monte Carlo simulations are performed on these MOFs, among which the optimal one exhibits comparable selectivity (36.9) and high adsorbent performance score (315.9) that surpasses the state-of-the-art materials do. This work not only presents a cost-effective approach firstly applying in the separation of hydrogen isotopes, but also provides experimental guidance for the design of high-performance adsorbents.
科研通智能强力驱动
Strongly Powered by AbleSci AI