亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel multi-feature learning model for disease diagnosis using face skin images

质心 模式识别(心理学) 鉴别器 人工智能 特征向量 分类器(UML) 医学诊断 嵌入 计算机科学 特征(语言学) 特征提取 医学 电信 语言学 哲学 病理 探测器
作者
Nannan Zhang,Zhixing Jiang,Mu Li,David Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107837-107837 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107837
摘要

Facial skin characteristics can provide valuable information about a patient's underlying health conditions. In practice, there are often samples with divergent characteristics (commonly known as divergent samples) that can be attributed to environmental factors, living conditions, or genetic elements. These divergent samples significantly degrade the accuracy of diagnoses. To tackle this problem, we propose a novel multi-feature learning method called Multi-Feature Learning with Centroid Matrix (MFLCM), which aims to mitigate the influence of divergent samples on the accurate classification of samples located on the boundary. In this approach, we introduce a novel discriminator that incorporates a centroid matrix strategy and simultaneously adapt it to a classifier in a unified model. We effectively apply the centroid matrix to the embedding feature spaces, which are transformed from the multi-feature observation space, by calculating a relaxed Hamming distance. The purpose of the centroid vectors for each category is to act as anchors, ensuring that samples from the same class are positioned close to their corresponding centroid vector while being pushed further away from the remaining centroids. Validation of the proposed method with clinical facial skin dataset showed that the proposed method achieved F1 scores of 92.59%, 83.35%, 82.84% and 85.46%, respectively for the detection the Healthy, Diabetes Mellitus (DM), Fatty Liver (FL) and Chronic Renal Failure (CRF). Experimental results demonstrate the superiority of the proposed method compared with typical classifiers single-view-based and state-of-the-art multi-feature approaches. To the best of our knowledge, this study represents the first to demonstrate concept of multi-feature learning using only facial skin images as an effective non-invasive approach for simultaneously identifying DM, FL and CRF in Han Chinese, the largest ethnic group in the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助耕云钓月采纳,获得10
刚刚
清一完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
shinn发布了新的文献求助10
4秒前
桐夜完成签到 ,获得积分10
4秒前
dada完成签到,获得积分10
7秒前
Soient发布了新的文献求助10
8秒前
8秒前
shinn发布了新的文献求助10
9秒前
16秒前
16秒前
舒服的觅夏完成签到,获得积分10
20秒前
21秒前
赘婿应助shinn采纳,获得10
29秒前
阿里完成签到,获得积分10
31秒前
1111关注了科研通微信公众号
33秒前
34秒前
动听的涵山完成签到,获得积分10
36秒前
思源应助郴欧尼采纳,获得10
36秒前
耕云钓月发布了新的文献求助10
38秒前
长安宁完成签到 ,获得积分10
39秒前
40秒前
45秒前
赘婿应助耕云钓月采纳,获得10
47秒前
shinn发布了新的文献求助10
48秒前
Ava应助shinn采纳,获得10
53秒前
54秒前
55秒前
1分钟前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247