ADDet: An Efficient Multiscale Perceptual Enhancement Network for Aluminum Defect Detection

材料科学 计算机科学 人工智能 冶金
作者
Jiang Zhu,Qingwei Pang,S. X. Li,Shujuan Tian,Jianqi Li,Yanchun Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3343789
摘要

As an indispensable material, aluminum requires real-time surface defect detection to effectively control quality. However, defects on the surface of aluminum have the inherent properties of tiny size, diverse morphology, and multiscale variations, which present a significant challenge for defect detection. This article aims to improve the performance and efficiency of a defect detection model and proposes an efficient multiscale perceptual enhancement network for aluminum defect detection (ADDet). First, to compensate for the loss of deep features and mitigate information interference from the background, a multilayer semantic-aware enhancement module (MSEM) is proposed for the feature extraction network. Second, a proximity feature pyramid (PFP) structure in the neck is designed to effectively merge multiscale features with low computational cost and enhance feature representation across spatial coordinates, channels, and scales. Finally, a large kernel-size decoupled head (LKSDH) with a large receptive field and multiple detection branches is constructed in the detection head to improve detection accuracy. Experimental results show that the mean average precision (mAP) of the proposed ADDet is 80.85% with a real-time detection speed of 63.41 frames per second (FPS). Compared to YOLOv7, ADDet improves the mAP by 3.02%, and the number of parameters and FLOPs are reduced by 23.8% and 13%, respectively. Moreover, ADDet is shown to be superior to state-of-the-art detection methods in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
公子襄完成签到,获得积分10
3秒前
naturehome完成签到,获得积分10
3秒前
xfye发布了新的文献求助20
5秒前
kitlov完成签到,获得积分20
5秒前
大模型应助曾泓跃采纳,获得10
5秒前
yichuanfendai完成签到,获得积分20
6秒前
niepan发布了新的文献求助10
6秒前
maxinyu完成签到 ,获得积分10
7秒前
7秒前
8秒前
852应助洁净白容采纳,获得10
9秒前
9秒前
上官若男应助yichuanfendai采纳,获得10
11秒前
瑞rui发布了新的文献求助30
12秒前
王多多发布了新的文献求助10
13秒前
yysy完成签到 ,获得积分10
14秒前
15秒前
陈思发布了新的文献求助10
15秒前
15秒前
15秒前
领导范儿应助科研采纳,获得30
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
小豆完成签到,获得积分20
18秒前
干净绮烟发布了新的文献求助10
19秒前
19秒前
ws发布了新的文献求助10
19秒前
luis发布了新的文献求助10
19秒前
death123517完成签到,获得积分10
19秒前
调皮霍乱弧菌完成签到 ,获得积分10
20秒前
伍襟傧完成签到,获得积分10
20秒前
情怀应助椎夭采纳,获得10
20秒前
21秒前
小党发布了新的文献求助10
21秒前
Kittymiaoo发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492