ADDet: An Efficient Multiscale Perceptual Enhancement Network for Aluminum Defect Detection

材料科学 计算机科学 人工智能 冶金
作者
Jiang Zhu,Qingwei Pang,S. X. Li,Shujuan Tian,Jianqi Li,Yanchun Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3343789
摘要

As an indispensable material, aluminum requires real-time surface defect detection to effectively control quality. However, defects on the surface of aluminum have the inherent properties of tiny size, diverse morphology, and multiscale variations, which present a significant challenge for defect detection. This article aims to improve the performance and efficiency of a defect detection model and proposes an efficient multiscale perceptual enhancement network for aluminum defect detection (ADDet). First, to compensate for the loss of deep features and mitigate information interference from the background, a multilayer semantic-aware enhancement module (MSEM) is proposed for the feature extraction network. Second, a proximity feature pyramid (PFP) structure in the neck is designed to effectively merge multiscale features with low computational cost and enhance feature representation across spatial coordinates, channels, and scales. Finally, a large kernel-size decoupled head (LKSDH) with a large receptive field and multiple detection branches is constructed in the detection head to improve detection accuracy. Experimental results show that the mean average precision (mAP) of the proposed ADDet is 80.85% with a real-time detection speed of 63.41 frames per second (FPS). Compared to YOLOv7, ADDet improves the mAP by 3.02%, and the number of parameters and FLOPs are reduced by 23.8% and 13%, respectively. Moreover, ADDet is shown to be superior to state-of-the-art detection methods in terms of detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小迪完成签到,获得积分10
1秒前
我是老大应助OnlyHarbour采纳,获得10
3秒前
zh_li完成签到,获得积分10
4秒前
cheng完成签到,获得积分10
4秒前
4秒前
NN应助李7采纳,获得20
4秒前
5秒前
pp完成签到,获得积分10
6秒前
浮游应助壮观乘云采纳,获得10
6秒前
jun完成签到 ,获得积分10
6秒前
6秒前
6秒前
嗯嗯应助王之争霸采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
海南发布了新的文献求助10
9秒前
晨晨发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
缓慢尔岚发布了新的文献求助10
11秒前
善良随阴完成签到,获得积分10
11秒前
11秒前
11秒前
奶白的雪子完成签到,获得积分10
11秒前
星辰大海应助阿依咕噜采纳,获得10
13秒前
香蕉觅云应助DG采纳,获得10
13秒前
睡觉了完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Y_Y完成签到,获得积分10
14秒前
zorro3574发布了新的文献求助10
14秒前
14秒前
14秒前
嘿嘿完成签到,获得积分10
15秒前
renxin发布了新的文献求助10
15秒前
16秒前
17秒前
内向孤菱发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131