ADDet: An Efficient Multiscale Perceptual Enhancement Network for Aluminum Defect Detection

材料科学 计算机科学 人工智能 冶金
作者
Jiang Zhu,Qingwei Pang,S. X. Li,Shujuan Tian,Jianqi Li,Yanchun Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3343789
摘要

As an indispensable material, aluminum requires real-time surface defect detection to effectively control quality. However, defects on the surface of aluminum have the inherent properties of tiny size, diverse morphology, and multiscale variations, which present a significant challenge for defect detection. This article aims to improve the performance and efficiency of a defect detection model and proposes an efficient multiscale perceptual enhancement network for aluminum defect detection (ADDet). First, to compensate for the loss of deep features and mitigate information interference from the background, a multilayer semantic-aware enhancement module (MSEM) is proposed for the feature extraction network. Second, a proximity feature pyramid (PFP) structure in the neck is designed to effectively merge multiscale features with low computational cost and enhance feature representation across spatial coordinates, channels, and scales. Finally, a large kernel-size decoupled head (LKSDH) with a large receptive field and multiple detection branches is constructed in the detection head to improve detection accuracy. Experimental results show that the mean average precision (mAP) of the proposed ADDet is 80.85% with a real-time detection speed of 63.41 frames per second (FPS). Compared to YOLOv7, ADDet improves the mAP by 3.02%, and the number of parameters and FLOPs are reduced by 23.8% and 13%, respectively. Moreover, ADDet is shown to be superior to state-of-the-art detection methods in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于平川春野完成签到 ,获得积分10
刚刚
1秒前
小畅完成签到,获得积分10
1秒前
领导范儿应助hbzyydx46采纳,获得10
1秒前
1秒前
暖冬22完成签到,获得积分10
2秒前
代茜蕾完成签到,获得积分10
2秒前
2秒前
中级中级发布了新的文献求助10
2秒前
情怀应助小小苏荷采纳,获得10
3秒前
3秒前
ww发布了新的文献求助10
4秒前
李嘻嘻完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助早点睡觉丶采纳,获得10
6秒前
火羽白发布了新的文献求助10
6秒前
7秒前
Smar_zcl应助负责新筠采纳,获得20
7秒前
zcx完成签到,获得积分10
8秒前
张资阳完成签到,获得积分20
8秒前
8秒前
Stella应助野渡舟采纳,获得30
9秒前
英俊冷玉发布了新的文献求助10
9秒前
苒洳完成签到 ,获得积分10
9秒前
雨柏完成签到 ,获得积分10
9秒前
夕沫完成签到,获得积分10
10秒前
开朗书双发布了新的文献求助10
10秒前
11秒前
泡泡发布了新的文献求助30
11秒前
小马甲应助liang2508采纳,获得10
12秒前
静候佳音完成签到 ,获得积分10
12秒前
抗体小王完成签到,获得积分10
12秒前
13秒前
14秒前
未曾去过_完成签到 ,获得积分10
14秒前
15秒前
时丶倾发布了新的文献求助10
16秒前
16秒前
enen完成签到,获得积分10
17秒前
清颜发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350808
求助须知:如何正确求助?哪些是违规求助? 4484077
关于积分的说明 13958060
捐赠科研通 4383491
什么是DOI,文献DOI怎么找? 2408404
邀请新用户注册赠送积分活动 1401024
关于科研通互助平台的介绍 1374432