ADDet: An Efficient Multiscale Perceptual Enhancement Network for Aluminum Defect Detection

材料科学 计算机科学 人工智能 冶金
作者
Jiang Zhu,Qingwei Pang,S. X. Li,Shujuan Tian,Jianqi Li,Yanchun Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3343789
摘要

As an indispensable material, aluminum requires real-time surface defect detection to effectively control quality. However, defects on the surface of aluminum have the inherent properties of tiny size, diverse morphology, and multiscale variations, which present a significant challenge for defect detection. This article aims to improve the performance and efficiency of a defect detection model and proposes an efficient multiscale perceptual enhancement network for aluminum defect detection (ADDet). First, to compensate for the loss of deep features and mitigate information interference from the background, a multilayer semantic-aware enhancement module (MSEM) is proposed for the feature extraction network. Second, a proximity feature pyramid (PFP) structure in the neck is designed to effectively merge multiscale features with low computational cost and enhance feature representation across spatial coordinates, channels, and scales. Finally, a large kernel-size decoupled head (LKSDH) with a large receptive field and multiple detection branches is constructed in the detection head to improve detection accuracy. Experimental results show that the mean average precision (mAP) of the proposed ADDet is 80.85% with a real-time detection speed of 63.41 frames per second (FPS). Compared to YOLOv7, ADDet improves the mAP by 3.02%, and the number of parameters and FLOPs are reduced by 23.8% and 13%, respectively. Moreover, ADDet is shown to be superior to state-of-the-art detection methods in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助LL采纳,获得10
1秒前
1秒前
1秒前
17完成签到,获得积分10
2秒前
冷酷愚志完成签到,获得积分10
3秒前
北媛发布了新的文献求助10
4秒前
4秒前
Dr.feng发布了新的文献求助10
4秒前
4秒前
lcx完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
乾清宫喝奶茶完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
李涵完成签到,获得积分10
9秒前
欣欣完成签到,获得积分10
10秒前
傲娇林发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
13秒前
研友_Z729Mn发布了新的文献求助10
14秒前
独特跳跳糖完成签到 ,获得积分10
15秒前
15秒前
hyl-tcm完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
LL发布了新的文献求助10
18秒前
xavier发布了新的文献求助10
18秒前
18秒前
孙意冉发布了新的文献求助10
19秒前
20秒前
hd发布了新的文献求助10
21秒前
22秒前
kakainho完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474