ADDet: An Efficient Multiscale Perceptual Enhancement Network for Aluminum Defect Detection

材料科学 计算机科学 人工智能 冶金
作者
Jiang Zhu,Qingwei Pang,S. X. Li,Shujuan Tian,Jianqi Li,Yanchun Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3343789
摘要

As an indispensable material, aluminum requires real-time surface defect detection to effectively control quality. However, defects on the surface of aluminum have the inherent properties of tiny size, diverse morphology, and multiscale variations, which present a significant challenge for defect detection. This article aims to improve the performance and efficiency of a defect detection model and proposes an efficient multiscale perceptual enhancement network for aluminum defect detection (ADDet). First, to compensate for the loss of deep features and mitigate information interference from the background, a multilayer semantic-aware enhancement module (MSEM) is proposed for the feature extraction network. Second, a proximity feature pyramid (PFP) structure in the neck is designed to effectively merge multiscale features with low computational cost and enhance feature representation across spatial coordinates, channels, and scales. Finally, a large kernel-size decoupled head (LKSDH) with a large receptive field and multiple detection branches is constructed in the detection head to improve detection accuracy. Experimental results show that the mean average precision (mAP) of the proposed ADDet is 80.85% with a real-time detection speed of 63.41 frames per second (FPS). Compared to YOLOv7, ADDet improves the mAP by 3.02%, and the number of parameters and FLOPs are reduced by 23.8% and 13%, respectively. Moreover, ADDet is shown to be superior to state-of-the-art detection methods in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃哈哈发布了新的文献求助10
4秒前
NexusExplorer应助YESKY采纳,获得10
5秒前
北笙发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
李123发布了新的文献求助10
6秒前
7秒前
温婉的以松完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Rain发布了新的文献求助10
9秒前
9秒前
11秒前
咖北发布了新的文献求助10
11秒前
yu发布了新的文献求助10
12秒前
云枝发布了新的文献求助10
12秒前
随行完成签到 ,获得积分10
12秒前
12秒前
pluto应助梁子明采纳,获得10
12秒前
Uniibooy发布了新的文献求助10
13秒前
asADA发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
任性尔容关注了科研通微信公众号
15秒前
后海给后海的求助进行了留言
15秒前
研友_VZG7GZ应助YESKY采纳,获得10
16秒前
17秒前
汉堡包应助坚定的又莲采纳,获得10
19秒前
123发布了新的文献求助10
20秒前
咖北完成签到,获得积分10
21秒前
李健的粉丝团团长应助Ye13采纳,获得10
21秒前
21秒前
21秒前
glanceofwind完成签到 ,获得积分10
22秒前
湘文完成签到 ,获得积分10
22秒前
22秒前
orixero应助开心的期待采纳,获得10
22秒前
23秒前
浮游应助克莱恩不想读研采纳,获得10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453630
求助须知:如何正确求助?哪些是违规求助? 4561192
关于积分的说明 14281077
捐赠科研通 4485153
什么是DOI,文献DOI怎么找? 2456502
邀请新用户注册赠送积分活动 1447252
关于科研通互助平台的介绍 1422669