Metabolic flux optimization of iterative pathways through orthogonal gene expression control: Application to the β-oxidation reversal

代谢工程 焊剂(冶金) 代谢途径 计算生物学 丁酸盐 分拆(数论) 计算机科学 通量平衡分析 质粒 基因 生物 生物化学 化学 数学 发酵 组合数学 有机化学
作者
Seung Hwan Lee,Haiquan Yang,Alexander Chou,Jing Chen,Ramón González
出处
期刊:Metabolic Engineering [Elsevier]
被引量:1
标识
DOI:10.1016/j.ymben.2024.02.007
摘要

Balancing relative expression of pathway genes to minimize flux bottlenecks and metabolic burden is one of the key challenges in metabolic engineering. This is especially relevant for iterative pathways, such as reverse β-oxidation (rBOX) pathway, which require control of flux partition at multiple nodes to achieve efficient synthesis of target products. Here, we develop a plasmid-based inducible system for orthogonal control of gene expression (referred to as the TriO system) and demonstrate its utility in the rBOX pathway. Leveraging effortless construction of TriO vectors in a plug-and-play manner, we simultaneously explored the solution space for enzyme choice and relative expression levels. Remarkably, varying individual expression levels led to substantial change in product specificity ranging from no production to optimal performance of about 90% of the theoretical yield of the desired products. We obtained titers of 6.3 g/L butyrate, 2.2 g/L butanol and 4.0 g/L hexanoate from glycerol in E. coli, which exceed the best titers previously reported using equivalent enzyme combinations. Since a similar system behavior was observed with alternative termination routes and higher-order iterations, we envision our approach to be broadly applicable to other iterative pathways besides the rBOX. Considering that high throughput, automated strain construction using combinatorial promoter and RBS libraries remain out of reach for many researchers, especially in academia, tools like the TriO system could democratize the testing and evaluation of pathway designs by reducing cost, time and infrastructure requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助5shui采纳,获得10
3秒前
Jasper应助5shui采纳,获得10
3秒前
3秒前
3秒前
4秒前
彭于晏应助追寻依风采纳,获得10
4秒前
荤素搭配完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
夏微凉发布了新的文献求助10
6秒前
斯人发布了新的文献求助10
7秒前
开心青旋完成签到,获得积分10
8秒前
8秒前
华仔应助天下、采纳,获得30
9秒前
9秒前
scholarpei完成签到,获得积分10
9秒前
悦耳的妙竹完成签到,获得积分10
12秒前
莫123发布了新的文献求助10
12秒前
竹萧发布了新的文献求助30
12秒前
搞怪小凡完成签到 ,获得积分10
13秒前
顺心夜南完成签到,获得积分0
14秒前
十七发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
辛木完成签到 ,获得积分10
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
加纳发布了新的文献求助10
15秒前
15秒前
15秒前
zhonglv7应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
zhonglv7应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769838
求助须知:如何正确求助?哪些是违规求助? 5581810
关于积分的说明 15422799
捐赠科研通 4903452
什么是DOI,文献DOI怎么找? 2638206
邀请新用户注册赠送积分活动 1586102
关于科研通互助平台的介绍 1541215