CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier]
卷期号:224: 54-62 被引量:5
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖完成签到,获得积分10
3秒前
丘比特应助浪迹天涯采纳,获得10
4秒前
6秒前
6秒前
虚幻白玉发布了新的文献求助10
7秒前
清客完成签到 ,获得积分10
7秒前
传奇3应助阳阳采纳,获得10
7秒前
9秒前
皮皮桂发布了新的文献求助10
9秒前
Hello应助无奈傲菡采纳,获得10
9秒前
故意的傲玉应助FENGHUI采纳,获得10
10秒前
11秒前
科研通AI5应助nextconnie采纳,获得10
12秒前
James完成签到,获得积分10
12秒前
13秒前
Lucas应助sun采纳,获得10
14秒前
KristenStewart完成签到,获得积分10
16秒前
过时的热狗完成签到,获得积分10
16秒前
点点完成签到,获得积分10
16秒前
Zxc发布了新的文献求助10
17秒前
涨芝士完成签到 ,获得积分10
18秒前
19秒前
无名欧文关注了科研通微信公众号
19秒前
科研123完成签到,获得积分10
21秒前
crescent完成签到 ,获得积分10
23秒前
无奈傲菡发布了新的文献求助10
23秒前
烟花应助123号采纳,获得10
26秒前
超帅的遥完成签到,获得积分10
26秒前
Zxc完成签到,获得积分10
27秒前
lbt完成签到 ,获得积分10
28秒前
yao完成签到 ,获得积分10
29秒前
29秒前
31秒前
32秒前
32秒前
doudou完成签到 ,获得积分10
32秒前
BCS完成签到,获得积分10
32秒前
领导范儿应助KYN采纳,获得10
32秒前
33秒前
独特的莫言完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849