CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier]
卷期号:224: 54-62 被引量:11
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
SciGPT应助Shuyinganxiang采纳,获得10
1秒前
1秒前
hahaha完成签到,获得积分20
1秒前
科研通AI6应助123采纳,获得10
1秒前
2秒前
2秒前
星辰大海应助v啦啦啦啦采纳,获得10
2秒前
3秒前
3秒前
Lucas应助6S6采纳,获得10
3秒前
gmat50完成签到 ,获得积分10
3秒前
4秒前
Aurora.H发布了新的文献求助10
4秒前
hcmsaobang2001完成签到,获得积分10
5秒前
英俊的铭应助赵十一采纳,获得10
5秒前
HY发布了新的文献求助30
5秒前
ly发布了新的文献求助10
6秒前
6秒前
36456657应助kk采纳,获得10
6秒前
yuxuan发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
乐乐应助Surge采纳,获得10
8秒前
8秒前
CipherSage应助水123采纳,获得10
8秒前
随便起个吧完成签到 ,获得积分10
8秒前
May发布了新的文献求助10
8秒前
夜寻发布了新的文献求助10
9秒前
1111111完成签到,获得积分10
9秒前
9秒前
夏墨发布了新的文献求助10
9秒前
9秒前
9秒前
有魅力的雨梅完成签到,获得积分10
10秒前
Ava应助龙行天下采纳,获得10
10秒前
策略完成签到,获得积分10
10秒前
Hhh完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386