已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier BV]
卷期号:224: 54-62 被引量:5
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbdd2334发布了新的文献求助10
2秒前
17381362015发布了新的文献求助10
2秒前
晓湫发布了新的文献求助10
2秒前
可爱的函函应助小肥吴采纳,获得10
5秒前
9秒前
LLX发布了新的文献求助10
10秒前
酷炫的凤妖完成签到 ,获得积分10
11秒前
过时的热狗完成签到 ,获得积分10
13秒前
博修发布了新的文献求助10
13秒前
17秒前
17秒前
薄荷梨完成签到,获得积分10
20秒前
晓湫发布了新的文献求助10
20秒前
white发布了新的文献求助10
22秒前
守墓人完成签到 ,获得积分10
26秒前
梦沉书远关注了科研通微信公众号
34秒前
mimi发布了新的文献求助10
35秒前
耍酷的冷雪完成签到,获得积分10
35秒前
37秒前
Focus_BG发布了新的文献求助10
38秒前
LLX关注了科研通微信公众号
38秒前
white完成签到,获得积分10
38秒前
望北楼主发布了新的文献求助10
41秒前
芍药完成签到 ,获得积分10
43秒前
Cao完成签到 ,获得积分10
43秒前
李健的粉丝团团长应助NMZN采纳,获得10
43秒前
centlay发布了新的文献求助100
44秒前
学术大亨发布了新的文献求助10
45秒前
46秒前
归尘发布了新的文献求助30
47秒前
Orange应助狮子清明尊采纳,获得10
48秒前
晓湫发布了新的文献求助10
50秒前
梦沉书远发布了新的文献求助10
51秒前
kmy完成签到 ,获得积分10
51秒前
yzbbb完成签到,获得积分10
53秒前
54秒前
酷波er应助星期五采纳,获得10
55秒前
58秒前
1分钟前
Dyying关注了科研通微信公众号
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603