CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier]
卷期号:224: 54-62 被引量:2
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
用户0001关注了科研通微信公众号
1秒前
夏冉发布了新的文献求助10
2秒前
毒盐发布了新的文献求助10
3秒前
陈呱呱发布了新的文献求助10
3秒前
菲灵完成签到,获得积分10
3秒前
4秒前
orixero应助TGU的小马同学采纳,获得10
5秒前
qianzheng应助ym采纳,获得10
5秒前
6秒前
tufei发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8R60d8应助HH采纳,获得10
7秒前
7秒前
hai发布了新的文献求助10
8秒前
9秒前
TKMY发布了新的文献求助10
10秒前
10秒前
yvonnecao发布了新的文献求助10
10秒前
爱拉芳的飘柔完成签到,获得积分20
11秒前
叮叮猫完成签到,获得积分10
11秒前
勤奋的猕猴桃完成签到,获得积分10
12秒前
心台应助虚心青采纳,获得10
12秒前
戚奄发布了新的文献求助10
13秒前
思123发布了新的文献求助10
13秒前
19116252519完成签到 ,获得积分10
14秒前
zake发布了新的文献求助10
14秒前
CC发布了新的文献求助10
14秒前
15秒前
15秒前
小夏饭桶应助皮水儿采纳,获得10
16秒前
17秒前
Jade发布了新的文献求助10
18秒前
19秒前
zxy发布了新的文献求助10
20秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144