Semantic Segmentation of Remote Sensing Images by Interactive Representation Refinement and Geometric Prior-Guided Inference

计算机科学 人工智能 先验概率 几何变换 判别式 分割 编码器 模式识别(心理学) 推论 特征学习 特征(语言学) 计算机视觉 图像(数学) 贝叶斯概率 哲学 操作系统 语言学
作者
Xin Li,Feng Xu,Fan Liu,Yao Tong,Xin Lyu,Jun Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:6
标识
DOI:10.1109/tgrs.2023.3339291
摘要

High spatial resolution remote sensing images (HRRSIs) contain intricate details and varied spectral distributions, making their semantic segmentation a challenging task. To address this problem, it is crucial to adequately capture both local and global contexts to reduce semantic ambiguity. While self-attention modules in vision transformers capture long-range context, they tend to sacrifice local details. In this article, we propose a geometric prior-guided interactive network (GPINet), a hybrid network that refines features across encoder and decoder stages. First of all, a dual branch structure encoder with local-global interaction modules (LGIMs) is designed to fully exploit local and global contexts for feature refinement. Unlike commonly used skip connections or concatenations, the LGIMs bilaterally couple and exchange CNN features with transformer features by lossless transformation and elaborating cross-attention. Moreover, we introduce a geometric prior generation module (GPGM) that iteratively updates the randomly initialized geometric prior. Subsequently, the geometric priors are stored and used to guide feature recovery. Finally, a weighted summation is applied to the upsampled decoded features and geometric priors. By comprehensively capturing contexts and enabling lossless decoding and deterministic inference, GPINet allows the network to learn discriminative representations for accurately specifying pixel-level semantics. Experiments on three benchmark datasets demonstrate the superiority of the proposed GPINet over state-of-the-art methods. Furthermore, we validate the effectiveness of geometric priors and compare the model sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MRJJJJ完成签到,获得积分10
刚刚
1秒前
skyinner完成签到 ,获得积分10
2秒前
HYanGjiN完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
6秒前
丘比特应助小野狼采纳,获得10
7秒前
7秒前
Ryuu发布了新的文献求助10
9秒前
wood发布了新的文献求助10
10秒前
11秒前
斯文的道罡完成签到,获得积分10
13秒前
baoxiaozhai完成签到 ,获得积分10
13秒前
天南星发布了新的文献求助30
13秒前
李健应助科研小迷糊采纳,获得10
13秒前
搜集达人应助夕荀采纳,获得10
14秒前
14秒前
JamesPei应助MING_Q采纳,获得10
14秒前
14秒前
15秒前
16秒前
丘比特应助Ryuu采纳,获得10
18秒前
18秒前
幕帆应助坚强的安柏采纳,获得20
18秒前
bkagyin应助桥波采纳,获得10
19秒前
小野狼发布了新的文献求助10
19秒前
戒不掉的烟完成签到,获得积分10
20秒前
妩媚的尔阳完成签到,获得积分10
20秒前
20秒前
ng完成签到,获得积分10
21秒前
小超人发布了新的文献求助10
22秒前
J卡卡K完成签到 ,获得积分10
23秒前
德鲁大叔完成签到,获得积分10
24秒前
CSUST科研一哥应助Weiyu采纳,获得20
25秒前
难过大神完成签到,获得积分10
25秒前
夕荀发布了新的文献求助10
25秒前
科研通AI2S应助77采纳,获得10
26秒前
不倦应助感动语蝶采纳,获得10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243037
求助须知:如何正确求助?哪些是违规求助? 2887097
关于积分的说明 8246502
捐赠科研通 2555694
什么是DOI,文献DOI怎么找? 1383806
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631