Runtime unknown unsafe scenarios identification for SOTIF of autonomous vehicles

鉴定(生物学) 计算机科学 领域(数学) 可靠性工程 机器学习 数据挖掘 人工智能 工程类 数学 植物 生物 纯数学
作者
Cheng Wang,Kai Storms,Ning Zhang,Hermann Winner
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:195: 107410-107410 被引量:6
标识
DOI:10.1016/j.aap.2023.107410
摘要

Safety is a critical concern for autonomous vehicles (AVs). Current testing approaches face challenges in simultaneously meeting the requirements of being valid, safe, and fast. To address these challenges, the silent testing approach that tests functions or systems in the background without interfering with driving is motivated. Building upon our previous research, this study first extends the method to specifically address the validation of AV perception, utilizing a lane marking detection algorithm (LMDA) as a case study. Second, field experiments were conducted to investigate the method's effectiveness in validating AV systems. For both studies, an architecture for describing the working principle is presented. The efficacy of the method in evaluating the LMDA is demonstrated through the use of adversarial images generated from a dataset. Furthermore, various scenarios involving pedestrians crossing a road under different levels of criticality were constructed to gain practical insights into the method's applicability for AV system validation. The results show that corner cases of the LMDA are successfully identified by the given evaluation metrics. Furthermore, the experiments highlight the benefits of employing multiple virtual instances with different initial states, enabling the expansion of the test space and the discovery of unknown unsafe scenarios, particularly those prone to false-positive objects. The practical implementation and systematic discussion of the method offer a significant contribution to AV safety validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余鹰完成签到,获得积分10
刚刚
拉普拉斯妖完成签到,获得积分10
刚刚
吴小利关注了科研通微信公众号
1秒前
ASUKA完成签到,获得积分10
2秒前
宫宛儿完成签到,获得积分10
2秒前
2秒前
上官若男应助认真的诗云采纳,获得10
2秒前
3秒前
池鱼完成签到,获得积分10
3秒前
小陈完成签到,获得积分20
3秒前
3秒前
sunrase完成签到,获得积分10
4秒前
乐呵呵发布了新的文献求助10
4秒前
f冯完成签到,获得积分10
4秒前
5秒前
peach完成签到,获得积分20
5秒前
李健的粉丝团团长应助apt采纳,获得10
5秒前
5秒前
打打应助王松桐采纳,获得10
6秒前
Longer完成签到,获得积分10
7秒前
人人人完成签到,获得积分10
7秒前
7秒前
募股小发布了新的文献求助10
8秒前
明亮的冷雪完成签到,获得积分10
8秒前
可耐的迎丝关注了科研通微信公众号
8秒前
pc完成签到,获得积分10
8秒前
8秒前
8秒前
崔昕雨发布了新的文献求助10
9秒前
寒冷的煜祺完成签到,获得积分10
9秒前
9秒前
郭禹霄完成签到,获得积分10
9秒前
ChinaOX完成签到,获得积分10
10秒前
10秒前
单薄的沛槐完成签到,获得积分10
10秒前
共享精神应助guozizi采纳,获得10
10秒前
chuzihang完成签到 ,获得积分10
11秒前
12秒前
potatozhou完成签到,获得积分10
13秒前
水濑心源完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077