Runtime unknown unsafe scenarios identification for SOTIF of autonomous vehicles

鉴定(生物学) 计算机科学 领域(数学) 可靠性工程 机器学习 数据挖掘 人工智能 工程类 数学 植物 生物 纯数学
作者
Cheng Wang,Kai Storms,Ning Zhang,Hermann Winner
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107410-107410 被引量:2
标识
DOI:10.1016/j.aap.2023.107410
摘要

Safety is a critical concern for autonomous vehicles (AVs). Current testing approaches face challenges in simultaneously meeting the requirements of being valid, safe, and fast. To address these challenges, the silent testing approach that tests functions or systems in the background without interfering with driving is motivated. Building upon our previous research, this study first extends the method to specifically address the validation of AV perception, utilizing a lane marking detection algorithm (LMDA) as a case study. Second, field experiments were conducted to investigate the method's effectiveness in validating AV systems. For both studies, an architecture for describing the working principle is presented. The efficacy of the method in evaluating the LMDA is demonstrated through the use of adversarial images generated from a dataset. Furthermore, various scenarios involving pedestrians crossing a road under different levels of criticality were constructed to gain practical insights into the method's applicability for AV system validation. The results show that corner cases of the LMDA are successfully identified by the given evaluation metrics. Furthermore, the experiments highlight the benefits of employing multiple virtual instances with different initial states, enabling the expansion of the test space and the discovery of unknown unsafe scenarios, particularly those prone to false-positive objects. The practical implementation and systematic discussion of the method offer a significant contribution to AV safety validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的琳发布了新的文献求助10
1秒前
时光发布了新的文献求助10
1秒前
yuki完成签到,获得积分10
1秒前
南逸然完成签到,获得积分10
1秒前
1秒前
2秒前
HongJiang发布了新的文献求助10
2秒前
2秒前
筱谭完成签到 ,获得积分10
2秒前
guanze完成签到 ,获得积分10
3秒前
zho关闭了zho文献求助
3秒前
ding应助起承转合采纳,获得10
3秒前
4秒前
蛋炒饭不加蛋完成签到,获得积分10
4秒前
酷炫素完成签到,获得积分10
4秒前
阿金发布了新的文献求助10
5秒前
Jasper应助帅气鹭洋采纳,获得10
5秒前
5秒前
明天更好发布了新的文献求助10
5秒前
6秒前
科研通AI5应助小柠檬采纳,获得10
6秒前
YY完成签到,获得积分10
6秒前
7秒前
科研通AI5应助stt采纳,获得10
7秒前
LDM发布了新的文献求助10
7秒前
上官若男应助乐正成危采纳,获得10
8秒前
小二郎应助有魅力傲菡采纳,获得10
8秒前
追寻夜香完成签到,获得积分10
8秒前
青石完成签到,获得积分20
9秒前
9秒前
浩浩大人发布了新的文献求助10
9秒前
白榆发布了新的文献求助10
9秒前
咕噜仔发布了新的文献求助10
10秒前
寒冷书竹发布了新的文献求助10
10秒前
落雨冥完成签到,获得积分10
10秒前
xinchengzhu完成签到,获得积分10
10秒前
10秒前
慕课魔芋完成签到 ,获得积分10
11秒前
11秒前
左丘幼旋1完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678