Runtime unknown unsafe scenarios identification for SOTIF of autonomous vehicles

鉴定(生物学) 计算机科学 领域(数学) 可靠性工程 机器学习 数据挖掘 人工智能 工程类 数学 植物 生物 纯数学
作者
Cheng Wang,Kai Storms,Ning Zhang,Hermann Winner
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107410-107410 被引量:6
标识
DOI:10.1016/j.aap.2023.107410
摘要

Safety is a critical concern for autonomous vehicles (AVs). Current testing approaches face challenges in simultaneously meeting the requirements of being valid, safe, and fast. To address these challenges, the silent testing approach that tests functions or systems in the background without interfering with driving is motivated. Building upon our previous research, this study first extends the method to specifically address the validation of AV perception, utilizing a lane marking detection algorithm (LMDA) as a case study. Second, field experiments were conducted to investigate the method's effectiveness in validating AV systems. For both studies, an architecture for describing the working principle is presented. The efficacy of the method in evaluating the LMDA is demonstrated through the use of adversarial images generated from a dataset. Furthermore, various scenarios involving pedestrians crossing a road under different levels of criticality were constructed to gain practical insights into the method's applicability for AV system validation. The results show that corner cases of the LMDA are successfully identified by the given evaluation metrics. Furthermore, the experiments highlight the benefits of employing multiple virtual instances with different initial states, enabling the expansion of the test space and the discovery of unknown unsafe scenarios, particularly those prone to false-positive objects. The practical implementation and systematic discussion of the method offer a significant contribution to AV safety validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乐天发布了新的文献求助20
1秒前
王木木完成签到,获得积分10
2秒前
冰冰发布了新的文献求助10
2秒前
2秒前
123456发布了新的文献求助10
3秒前
Denz发布了新的文献求助10
3秒前
在水一方应助一颗葡萄采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
5秒前
大模型应助清新的三毒采纳,获得10
6秒前
sunrise完成签到,获得积分10
6秒前
太渊完成签到 ,获得积分10
6秒前
7秒前
7秒前
李爱国应助优美茹妖采纳,获得10
8秒前
由清涟发布了新的文献求助10
8秒前
秦小如关注了科研通微信公众号
8秒前
8秒前
8秒前
欢呼的初蓝完成签到,获得积分10
8秒前
yue完成签到 ,获得积分10
9秒前
陈旭阳完成签到,获得积分10
9秒前
小慈爱鸡完成签到 ,获得积分10
9秒前
崔雨旋完成签到,获得积分10
9秒前
ocean完成签到,获得积分10
10秒前
10秒前
开心的火龙果完成签到,获得积分10
10秒前
李李发布了新的文献求助10
10秒前
青春完成签到 ,获得积分10
10秒前
风凌发布了新的文献求助10
11秒前
个性的抽象完成签到 ,获得积分10
11秒前
大知闲闲完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
chuhaixunjing完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439470
求助须知:如何正确求助?哪些是违规求助? 4550649
关于积分的说明 14225656
捐赠科研通 4471747
什么是DOI,文献DOI怎么找? 2450474
邀请新用户注册赠送积分活动 1441297
关于科研通互助平台的介绍 1417901