Adaptive radial basis functions based Time-Varying model for EEG analysis in patients with cervical dystonia

颈肌张力障碍 计算机科学 基础(线性代数) 肌张力障碍 脑电图 径向基函数 人工智能 数学 神经科学 心理学 人工神经网络 几何学
作者
Nan Zheng,Yurong Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106135-106135
标识
DOI:10.1016/j.bspc.2024.106135
摘要

Precise time–frequency (TF) analysis of electroencephalogram (EEG) signals is critical in evaluating cortical responses of patients with cervical dystonia (CD). Traditional methods are faced with challenges of constrained time–frequency resolution and accuracy, limiting the application of EEG in CD patients. This study introduces a novel adaptive basis function-based for TF representation method to meet the challenge. The methodology begins by identifying the kernel function center through an adaptive clustering technique. Then, the optimum structures and scales of the kernel function are determined by the improved genetic algorithm, which enable more precise tracking of EEG signals. Finally, accurately estimated parameters are converted to high-resolution TF images using a parameter spectrum estimation method, providing more detailed information of the EEG data. Leveraging the insights from the TF images, a regression model correlating TF features with clinical scores was developed to assess severity of CD patients. Simulation results show that the proposed method has superior tracking capabilities and a higher time–frequency resolution than current state-of-the-art methods. In the analysis of real EEG signals, we observed a notable elevation in gamma band power within the C3 and P3 channels, significantly differing from healthy individuals (p < 0.05), however, which cannot be found by other methods. This indicates distinctive high-frequency cortical activation associated with CD. Moreover, the regression model reaches a correlation coefficient above 0.82, suggesting its potential for objectively assessing severity of CD patients. Collectively, this study provides a robust tool for EEG signal analysis, and the analysis result will contribute to clinic treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李健的粉丝团团长应助qll采纳,获得10
1秒前
1秒前
飘逸翠曼发布了新的文献求助10
1秒前
在水一方应助闪闪落雁采纳,获得10
2秒前
田様应助JoaquinH采纳,获得10
3秒前
xly完成签到,获得积分10
3秒前
曾经绿兰发布了新的文献求助10
3秒前
1221完成签到,获得积分20
3秒前
海边的叶子完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
桐桐应助烟雨夕阳采纳,获得10
5秒前
小透明发布了新的文献求助10
5秒前
6秒前
英姑应助576-576采纳,获得10
6秒前
清风完成签到,获得积分10
6秒前
6秒前
6秒前
haaay发布了新的文献求助10
7秒前
rrrryym完成签到,获得积分10
7秒前
英姑应助牛八先生采纳,获得10
7秒前
7秒前
7秒前
7秒前
热情星星发布了新的文献求助10
8秒前
8秒前
岩松完成签到 ,获得积分10
8秒前
8秒前
9秒前
书桃完成签到,获得积分10
9秒前
1221发布了新的文献求助10
11秒前
11秒前
11秒前
yiersan发布了新的文献求助10
12秒前
杨启军发布了新的文献求助10
13秒前
野猪完成签到,获得积分10
13秒前
犹豫草莓完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675