Adaptive radial basis functions based Time-Varying model for EEG analysis in patients with cervical dystonia

颈肌张力障碍 计算机科学 基础(线性代数) 肌张力障碍 脑电图 径向基函数 人工智能 数学 神经科学 心理学 人工神经网络 几何学
作者
Nan Zheng,Yurong Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106135-106135
标识
DOI:10.1016/j.bspc.2024.106135
摘要

Precise time–frequency (TF) analysis of electroencephalogram (EEG) signals is critical in evaluating cortical responses of patients with cervical dystonia (CD). Traditional methods are faced with challenges of constrained time–frequency resolution and accuracy, limiting the application of EEG in CD patients. This study introduces a novel adaptive basis function-based for TF representation method to meet the challenge. The methodology begins by identifying the kernel function center through an adaptive clustering technique. Then, the optimum structures and scales of the kernel function are determined by the improved genetic algorithm, which enable more precise tracking of EEG signals. Finally, accurately estimated parameters are converted to high-resolution TF images using a parameter spectrum estimation method, providing more detailed information of the EEG data. Leveraging the insights from the TF images, a regression model correlating TF features with clinical scores was developed to assess severity of CD patients. Simulation results show that the proposed method has superior tracking capabilities and a higher time–frequency resolution than current state-of-the-art methods. In the analysis of real EEG signals, we observed a notable elevation in gamma band power within the C3 and P3 channels, significantly differing from healthy individuals (p < 0.05), however, which cannot be found by other methods. This indicates distinctive high-frequency cortical activation associated with CD. Moreover, the regression model reaches a correlation coefficient above 0.82, suggesting its potential for objectively assessing severity of CD patients. Collectively, this study provides a robust tool for EEG signal analysis, and the analysis result will contribute to clinic treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tt886677完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
赘婿应助yishan101采纳,获得10
3秒前
梁婧茵发布了新的文献求助20
3秒前
5秒前
5秒前
你好发布了新的文献求助10
5秒前
6秒前
6秒前
郭志康发布了新的文献求助10
6秒前
科研通AI2S应助bwh采纳,获得10
7秒前
23发布了新的文献求助10
7秒前
plaaf发布了新的文献求助10
8秒前
栾仪婷完成签到,获得积分20
8秒前
所所应助ZZ采纳,获得10
9秒前
Ava应助KerwinLLL采纳,获得10
9秒前
小幸运发布了新的文献求助10
9秒前
10秒前
可爱的函函应助蘑菇腿采纳,获得10
11秒前
under完成签到,获得积分10
11秒前
11秒前
12秒前
彭于晏应助annathd采纳,获得10
12秒前
12秒前
12秒前
12秒前
小杭76应助兴奋土豆采纳,获得10
13秒前
13秒前
13秒前
13秒前
慕青应助plaaf采纳,获得10
14秒前
FashionBoy应助XHT采纳,获得10
14秒前
am发布了新的文献求助10
14秒前
儒雅发布了新的文献求助10
15秒前
lza发布了新的文献求助30
15秒前
ys发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424571
求助须知:如何正确求助?哪些是违规求助? 4538919
关于积分的说明 14164314
捐赠科研通 4455873
什么是DOI,文献DOI怎么找? 2443988
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412452