Adaptive radial basis functions based Time-Varying model for EEG analysis in patients with cervical dystonia

颈肌张力障碍 计算机科学 基础(线性代数) 肌张力障碍 脑电图 径向基函数 人工智能 数学 神经科学 心理学 人工神经网络 几何学
作者
Nan Zheng,Yurong Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106135-106135
标识
DOI:10.1016/j.bspc.2024.106135
摘要

Precise time–frequency (TF) analysis of electroencephalogram (EEG) signals is critical in evaluating cortical responses of patients with cervical dystonia (CD). Traditional methods are faced with challenges of constrained time–frequency resolution and accuracy, limiting the application of EEG in CD patients. This study introduces a novel adaptive basis function-based for TF representation method to meet the challenge. The methodology begins by identifying the kernel function center through an adaptive clustering technique. Then, the optimum structures and scales of the kernel function are determined by the improved genetic algorithm, which enable more precise tracking of EEG signals. Finally, accurately estimated parameters are converted to high-resolution TF images using a parameter spectrum estimation method, providing more detailed information of the EEG data. Leveraging the insights from the TF images, a regression model correlating TF features with clinical scores was developed to assess severity of CD patients. Simulation results show that the proposed method has superior tracking capabilities and a higher time–frequency resolution than current state-of-the-art methods. In the analysis of real EEG signals, we observed a notable elevation in gamma band power within the C3 and P3 channels, significantly differing from healthy individuals (p < 0.05), however, which cannot be found by other methods. This indicates distinctive high-frequency cortical activation associated with CD. Moreover, the regression model reaches a correlation coefficient above 0.82, suggesting its potential for objectively assessing severity of CD patients. Collectively, this study provides a robust tool for EEG signal analysis, and the analysis result will contribute to clinic treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹅鹅鹅完成签到 ,获得积分10
2秒前
yznfly应助thk1234采纳,获得30
2秒前
隐形的代梅完成签到,获得积分10
3秒前
TheSilencer完成签到 ,获得积分10
6秒前
星辰大海应助zhang采纳,获得10
10秒前
bpg28发布了新的文献求助10
10秒前
可爱的函函应助Wei采纳,获得10
10秒前
10秒前
舌T完成签到,获得积分10
12秒前
12秒前
13秒前
jianmin完成签到,获得积分10
13秒前
tangz发布了新的文献求助10
14秒前
15秒前
15秒前
在水一方应助宥啊采纳,获得10
15秒前
jianmin发布了新的文献求助10
15秒前
17秒前
17秒前
多肉丸子完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
思源应助hqq采纳,获得10
18秒前
聪慧芷巧发布了新的文献求助10
19秒前
李小燕发布了新的文献求助10
19秒前
zhang发布了新的文献求助10
21秒前
21秒前
努力科研的博士僧完成签到,获得积分10
21秒前
zhuzhen007发布了新的文献求助10
23秒前
甜栗栗子完成签到 ,获得积分10
24秒前
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
脑洞疼应助果实采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
25秒前
大个应助科研通管家采纳,获得10
26秒前
anitachiu1104发布了新的文献求助10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150