亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APFC: Adaptive Particle Filter for Change Point Detection of Profile Data in Manufacturing Systems

颗粒过滤器 变更检测 计算机科学 算法 滤波器(信号处理) 数学优化 人工智能 数学 计算机视觉
作者
Yukun Xie,Juan Du,Jianguo Wu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 7143-7157
标识
DOI:10.1109/tase.2023.3338744
摘要

Change point detection is critical in quality inspection and assessment in manufacturing systems. As one of the most popular Bayesian inference techniques, particle filter algorithm has been successfully applied to estimate the change points of profile data in various manufacturing processes. However, particle filter is computationally expensive, which hinders its wide application for online change point detection. To overcome this challenge, we propose an adaptive particle filter algorithm (APFC) for online change point detection in this paper. With the full consideration of change mechanism, the particle sizes are adaptively selected for parameter estimation as time evolves. The proposed method is validated through extensive simulation studies and two real cases of pipe tightening process and nano manufacturing process. Note to Practitioners — This article is motivated by the problem that the particle filter algorithms have large computational costs when applying for the change point detection of profile data in manufacturing processes. Existing implementations of the particle filter algorithms for change point detection problems usually use a fixed and large particle size for estimations, which results in a large computational cost. The fact is that the computational costs can be reduced with smaller particle sizes. However, how to reduce the particle sizes yet keep the accuracy of change detection is challenging. To address this challenge, we develop an adaptive scheme to select the particle sizes to reduce the computation load. More particle sizes are used near the change point to keep the detection accuracy, while particle sizes are reduced to speed up the estimation process when the state of manufacturing processes is stable. We also provide mathematical support for setting the hyperparameters in the APFC framework. To better apply our method in the general change point detection problems, domain knowledge of the corresponding manufacturing processes needs to be considered for the hyperparameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助可靠的寒风采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
15秒前
18秒前
狂野晓蕾完成签到,获得积分20
34秒前
沉静代芹完成签到 ,获得积分10
49秒前
文文发布了新的文献求助10
1分钟前
1分钟前
wax应助文文采纳,获得10
1分钟前
多读苏发布了新的文献求助10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助多读苏采纳,获得10
3分钟前
在水一方应助多读苏采纳,获得10
3分钟前
Magali发布了新的文献求助10
3分钟前
3分钟前
492357816完成签到,获得积分10
3分钟前
Siwen发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
研友_VZG7GZ应助可靠的寒风采纳,获得10
4分钟前
着急的谷芹完成签到,获得积分20
4分钟前
逆天大脚发布了新的文献求助20
4分钟前
4分钟前
田様应助逆天大脚采纳,获得10
4分钟前
5分钟前
爆米花应助西米采纳,获得10
5分钟前
5分钟前
西米发布了新的文献求助10
5分钟前
5分钟前
qq1083716237应助爱笑的栀虞采纳,获得20
6分钟前
就叫希望吧完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335334
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447401
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974