Nomogram predicts the prognosis of patients with thymic carcinoma: A population-based study using SEER data

列线图 医学 肿瘤科 接收机工作特性 内科学 比例危险模型 阶段(地层学) 单变量分析 单变量 T级 转移 淋巴结 一致性 监测、流行病学和最终结果 流行病学 放射科 多元分析 癌症 总体生存率 多元统计 统计 古生物学 数学 癌症登记处 生物
作者
Yuguang Huang,Xuan Li,Shen-Hua Liang,Lingmin Wu,Guowei Ma
出处
期刊:Tumori Journal [SAGE]
卷期号:109 (3): 282-294
标识
DOI:10.1177/03008916221109334
摘要

Thymic carcinoma (TC) is a rare malignant tumor that can have a poor prognosis, and accurate prognostication prediction remains difficult. We aimed to develop a nomogram to predict overall survival (OS) and cancer-specific survival (CSS) based on a large cohort of patients.The Surveillance Epidemiology and End Results (SEER) database was searched to identify TC patients (1975-2016). Univariate and multivariable Cox regression analyses were used to identify predictors of OS and CSS, which were used to construct nomograms. The nomograms were evaluated using the concordance index (C-index), calibration curve, receiver operating characteristic curve, and decision curve analysis (DCA). Subgroup analysis was performed to identify high-risk patients.The analysis identified six predictors of OS (Masaoka stage, surgical method, lymph node metastasis, liver metastasis, bone metastasis, and radiotherapy) and five predictors of CSS (Masaoka stage, surgical method, lymph node metastasis, tumor size, and brain metastasis), which were used to create nomograms for predicting three-year and five-year OS and CSS. The nomograms had reasonable C-index values (OS: 0.687 [training] and 0.674 [validation], CSS: 0.712 [training] and 0.739 [validation]). The DCA curve revealed that the nomograms were better for predicting OS and CSS, relative to the Masaoka staging system.We developed nomograms using eight clinicopathological factors that predicted OS and CSS among TC patients. The nomograms performed better than the traditional Masaoka staging system and could identify high-risk patients. Based on the nomograms' performance, we believe they will be useful prognostication tools for TC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
James发布了新的文献求助10
1秒前
Lucas应助hu11采纳,获得10
2秒前
3秒前
专注的筝发布了新的文献求助10
3秒前
3秒前
4秒前
郭凯丽发布了新的文献求助30
4秒前
5秒前
5秒前
落后的萃发布了新的文献求助10
7秒前
脑洞疼应助Jana采纳,获得10
7秒前
7秒前
8秒前
13秒前
怕黑的枫完成签到 ,获得积分10
16秒前
李健应助TT2022采纳,获得10
16秒前
17秒前
18秒前
guiguibang发布了新的文献求助10
18秒前
Ruilin完成签到 ,获得积分10
19秒前
20秒前
名丿发布了新的文献求助10
22秒前
耍酷依玉完成签到,获得积分20
22秒前
丘比特应助Jessica采纳,获得30
22秒前
misaka11037完成签到,获得积分10
23秒前
舒适静丹完成签到,获得积分20
23秒前
23秒前
震动的曲奇完成签到,获得积分10
23秒前
Ava应助cheesy采纳,获得10
24秒前
耍酷依玉发布了新的文献求助10
24秒前
舒适静丹发布了新的文献求助10
29秒前
aaa发布了新的文献求助10
30秒前
李爱国应助羊羊采纳,获得20
30秒前
落后的萃完成签到,获得积分10
31秒前
Tang完成签到,获得积分10
31秒前
情怀应助容止采纳,获得10
31秒前
英俊的铭应助咪咪不吃糖采纳,获得10
33秒前
tuanheqi应助zyx采纳,获得50
33秒前
iidae完成签到,获得积分10
33秒前
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109