亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancement of charging and discharging of phase change material in annular thermal energy storage unit by applying magnetic field

环空(植物学) 材料科学 热能储存 储能 相变材料 热的 传热 机械 热传导 磁场 对流 热力学 复合材料 功率(物理) 物理 量子力学
作者
A. Ali Rabienataj Darzi,S. Morteza Mousavi
出处
期刊:Numerical Heat Transfer Part A-applications [Informa]
卷期号:83 (6): 609-625 被引量:9
标识
DOI:10.1080/10407782.2022.2102315
摘要

One of the most applicable geometries for a thermal energy storage unit is an annulus filled by phase change material (PCM). In time-sensitive applications, the charging and discharging rates of PCM are critical. In the early stage of the period, the phase change rate is high, and it becomes so low by progressing the time, especially in the pure conduction zone at the later stage. Staggering the tube increases the charging or discharging rates and decreases another. The enhancement of both the charging and discharging rates is desirable. To achieve this in the present study, to improve the heat transfer and phase change rates, the application of the magnetic field of an electric current-carrying wire at the top or the bottom of the annulus in order to induce a convection heat transfer in the nanoparticles-enhanced PCM (NePCM) is presented. The solution is validated with experimental and numerical data. The predicted result indicates that employing the wire at the top of the annulus can reduce the solidification time by 25%. The application of the magnetic field is more efficient in the charging process where the wire is employed under the annulus, which intensifies the melting rate up to 40%. Accordingly, considering the appropriate locations of the wire, a conceptual design of thermal energy storage unit under the magnetic field efficient in both charging and discharging processes is developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
20秒前
寻道图强应助科研通管家采纳,获得50
26秒前
Jasper应助诉与山风听采纳,获得10
29秒前
Tree_QD完成签到 ,获得积分10
29秒前
CMUSK完成签到,获得积分10
30秒前
1分钟前
yang发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
研友_VZG7GZ应助优美香露采纳,获得30
1分钟前
2分钟前
2分钟前
Carol发布了新的文献求助10
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助30
2分钟前
善学以致用应助优美香露采纳,获得30
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
OCDer发布了新的文献求助10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
OCDer完成签到,获得积分0
3分钟前
3分钟前
Zima发布了新的文献求助10
4分钟前
Zima完成签到,获得积分10
4分钟前
年轻绮波完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jianglan完成签到,获得积分10
4分钟前
4分钟前
jason完成签到 ,获得积分10
4分钟前
4分钟前
刻苦的小土豆完成签到 ,获得积分10
5分钟前
香蕉觅云应助如意修洁采纳,获得10
5分钟前
雨jia完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814