Privacy-Preserving Online Medical Prediagnosis Training Model Based on Soft-Margin SVM

计算机科学 同态加密 加密 差别隐私 支持向量机 人工智能 机器学习 数据挖掘 计算机安全
作者
Guoqiang Deng,Min Tang,Yuxing Xi,Mingwu Zhang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tsc.2022.3194121
摘要

Online medical prediagnosis systems have already shown great achievement in providing the guidance of healthcare services with lower time and cost. Achieving a high-precision medical primary diagnosis system faces many severe challenges on the privacy of individual health information, the distributed storage of medical data and the diversity of the disease. In this paper, we propose an efficient and privacy-preserving framework for obtaining a pre-clinical guide model, which allows an authorized data analysis center to train a disease classifier using a combination of medical data gathered from different entities. Our proposed scheme is based on soft-margin support vector machine (SVM) which takes Taylor polynomial of exponential-loss as penalty. Our scheme achieves the following advantages: the trained model can tolerate some abnormal samples therefore has higher generalization ability, and the training process can constraint the inefficient operations in the encrypted domain thus leads to the availability of partial homomorphic encryption system. Lately, we prove that the proposed scheme achieves the goal of medical prediagnosis system construction and data without privacy leakage to data analysis center and model parameters without exposure to data providers, as well as demonstrating its utility and efficiency using real-world medical datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路筝完成签到,获得积分10
1秒前
善学以致用应助jingzhang采纳,获得10
1秒前
明理萃完成签到 ,获得积分10
1秒前
5秒前
闪闪秋寒完成签到 ,获得积分10
6秒前
kelakola完成签到,获得积分10
6秒前
Crystal发布了新的文献求助10
7秒前
科学细胞发布了新的文献求助10
8秒前
科目三应助lulululululu采纳,获得20
9秒前
忧虑的花卷完成签到,获得积分10
10秒前
万邦德完成签到,获得积分10
13秒前
15秒前
17秒前
阿玛特拉斯完成签到,获得积分10
18秒前
19秒前
Hommand_藏山完成签到,获得积分10
20秒前
gy驳回了666应助
20秒前
安详凡发布了新的文献求助10
21秒前
coini发布了新的文献求助10
21秒前
木木杨完成签到,获得积分10
22秒前
Kirito完成签到,获得积分0
23秒前
WW发布了新的文献求助10
25秒前
执着的绿柏完成签到,获得积分10
30秒前
李健的小迷弟应助蓝桉采纳,获得30
31秒前
恋空完成签到 ,获得积分10
38秒前
小欧文完成签到,获得积分10
39秒前
繁多星完成签到,获得积分10
39秒前
43秒前
充电宝应助李胜采纳,获得10
45秒前
NEKO33完成签到,获得积分20
46秒前
48秒前
娟娟发布了新的文献求助10
48秒前
酷波er应助yuan466125789采纳,获得10
52秒前
53秒前
上官若男应助娟娟采纳,获得10
58秒前
wanci应助log采纳,获得10
1分钟前
悄悄是心上的肖肖完成签到 ,获得积分10
1分钟前
隐形曼青应助迷路芝麻采纳,获得10
1分钟前
LAVINE完成签到 ,获得积分10
1分钟前
asdf应助科研鸟采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357