Normal Assisted Pixel-Visibility Learning With Cost Aggregation for Multiview Stereo

计算机科学 人工智能 计算机视觉 深度图 能见度 像素 立体视觉 图像(数学) 光学 物理
作者
Wei Tong,Xiaorong Guan,Jian Kang,Zhao-Hui Sun,Rob Law,Pedram Ghamisi,Edmond Q. Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24686-24697 被引量:8
标识
DOI:10.1109/tits.2022.3193421
摘要

Multiple-View Stereo (MVS) aims to reconstruct the dense 3D representations of scenes. MVS has potential applications in the fields of autonomous driving (unstructured environment construction) and robotic navigation (visual-inertial navigation). To mitigate the error of depth estimation in low-textured or occluded regions, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. The improvements of this work over the state of the art are as follows: 1) Sparse costs are constructed to jointly predict the initial depth map and surface normal by cost regularization, which proves that the surface normals can be estimated in this way with low memory consumption. 2) A new edge refinement block is developed to refine the coarse surface normal to obtain a fine-grained surface normal map. 3) Instead of using the general variance-based metric to equally aggregate cost, a new content-adaptive cost aggregation mechanism based on the similarity of the neighboring surface normal is designed for reliable cost aggregation. To the best of our knowledge, the proposed work is the first trainable network that leverages surface normal as guidance to capture neighboring pixel-visibility, which is an effective supplement to existing depth/normal estimation frameworks. Experimental results indicate that our method can not only achieve accurate depth estimation for scene perception but also make no concession to the real-time performance and limited memory bottleblock. Multiple-view stereo (MVS) aims to reconstruct the dense 3D representations of scenes. It is widely used in the fields of industrial measurement, autonomous driving, and robotic navigation. To mitigate the error of depth estimation in challenging scenarios, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. Our method is the first trainable network that leverages surface normal as pixel-visibility guidance to aggregate reliable cost, which could achieve accurate depth estimation and provide the perception ability for the robot. The proposed method has great potential in the fields of 3D reconstruction, industrial measurement, and robotic navigation to estimate real-time and accurate depth with limited memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助reuslee采纳,获得10
刚刚
1秒前
yar应助额额采纳,获得10
2秒前
钙离子发布了新的文献求助10
2秒前
JamesPei应助优秀的枕头采纳,获得10
2秒前
儒雅谷芹发布了新的文献求助10
3秒前
爆米花完成签到,获得积分10
3秒前
蜗牛完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
嘻嘻完成签到,获得积分10
8秒前
大个应助xqq采纳,获得10
8秒前
8秒前
8秒前
xue发布了新的文献求助10
9秒前
9秒前
10秒前
乐乐应助希光光采纳,获得10
10秒前
11秒前
11秒前
12秒前
彭于晏应助冷语采纳,获得10
12秒前
三日发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
领导范儿应助曾经高跟鞋采纳,获得10
13秒前
13秒前
核桃应助可可采纳,获得10
13秒前
gszyxyrxj完成签到,获得积分20
13秒前
双楠发布了新的文献求助10
13秒前
冰奈铁完成签到,获得积分20
13秒前
迷人的又夏完成签到,获得积分10
15秒前
15秒前
pluto应助王一帆采纳,获得10
15秒前
zzx发布了新的文献求助10
16秒前
橘子汽水和蛋糕完成签到,获得积分10
16秒前
欣慰的剑鬼完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798