Normal Assisted Pixel-Visibility Learning With Cost Aggregation for Multiview Stereo

计算机科学 人工智能 计算机视觉 深度图 能见度 像素 立体视觉 图像(数学) 光学 物理
作者
Wei Tong,Xiaorong Guan,Jian Kang,Zhao-Hui Sun,Rob Law,Pedram Ghamisi,Edmond Q. Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24686-24697 被引量:8
标识
DOI:10.1109/tits.2022.3193421
摘要

Multiple-View Stereo (MVS) aims to reconstruct the dense 3D representations of scenes. MVS has potential applications in the fields of autonomous driving (unstructured environment construction) and robotic navigation (visual-inertial navigation). To mitigate the error of depth estimation in low-textured or occluded regions, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. The improvements of this work over the state of the art are as follows: 1) Sparse costs are constructed to jointly predict the initial depth map and surface normal by cost regularization, which proves that the surface normals can be estimated in this way with low memory consumption. 2) A new edge refinement block is developed to refine the coarse surface normal to obtain a fine-grained surface normal map. 3) Instead of using the general variance-based metric to equally aggregate cost, a new content-adaptive cost aggregation mechanism based on the similarity of the neighboring surface normal is designed for reliable cost aggregation. To the best of our knowledge, the proposed work is the first trainable network that leverages surface normal as guidance to capture neighboring pixel-visibility, which is an effective supplement to existing depth/normal estimation frameworks. Experimental results indicate that our method can not only achieve accurate depth estimation for scene perception but also make no concession to the real-time performance and limited memory bottleblock. Multiple-view stereo (MVS) aims to reconstruct the dense 3D representations of scenes. It is widely used in the fields of industrial measurement, autonomous driving, and robotic navigation. To mitigate the error of depth estimation in challenging scenarios, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. Our method is the first trainable network that leverages surface normal as pixel-visibility guidance to aggregate reliable cost, which could achieve accurate depth estimation and provide the perception ability for the robot. The proposed method has great potential in the fields of 3D reconstruction, industrial measurement, and robotic navigation to estimate real-time and accurate depth with limited memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光完成签到,获得积分10
1秒前
肘子完成签到,获得积分20
1秒前
洺全完成签到,获得积分10
2秒前
开朗寇发布了新的文献求助10
2秒前
whatever完成签到,获得积分0
2秒前
害羞听荷发布了新的文献求助10
3秒前
似水流年完成签到,获得积分10
3秒前
liuzengzhang666完成签到,获得积分10
4秒前
好好完成签到,获得积分10
4秒前
4秒前
HEIKU举报ms求助涉嫌违规
4秒前
明帅完成签到,获得积分10
5秒前
wyhhh完成签到,获得积分10
5秒前
Junly完成签到 ,获得积分10
5秒前
6秒前
followZ完成签到,获得积分10
6秒前
same完成签到,获得积分10
6秒前
果小镁发布了新的文献求助20
7秒前
7秒前
淡然尔蝶发布了新的文献求助10
7秒前
8秒前
桂花酒酿完成签到,获得积分10
8秒前
活泼之卉完成签到,获得积分10
8秒前
Bruce发布了新的文献求助10
8秒前
zhaofw发布了新的文献求助10
9秒前
9秒前
9秒前
乐乐应助wyhhh采纳,获得10
10秒前
杨欣悦完成签到,获得积分10
10秒前
10秒前
Komorebi完成签到,获得积分10
12秒前
⊙▽⊙完成签到,获得积分10
12秒前
想美事发布了新的文献求助10
12秒前
12秒前
13秒前
言小言完成签到,获得积分10
13秒前
争取不秃顶的医学僧完成签到,获得积分10
13秒前
hhh123发布了新的文献求助30
13秒前
风趣的烨磊完成签到,获得积分10
13秒前
ding应助淳于如雪采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303465
求助须知:如何正确求助?哪些是违规求助? 2937777
关于积分的说明 8483915
捐赠科研通 2611774
什么是DOI,文献DOI怎么找? 1426140
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647059