清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Normal Assisted Pixel-Visibility Learning With Cost Aggregation for Multiview Stereo

计算机科学 人工智能 计算机视觉 深度图 能见度 像素 立体视觉 图像(数学) 物理 光学
作者
Wei Tong,Xiaorong Guan,Jian Kang,Zhao-Hui Sun,Rob Law,Pedram Ghamisi,Edmond Q. Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24686-24697 被引量:8
标识
DOI:10.1109/tits.2022.3193421
摘要

Multiple-View Stereo (MVS) aims to reconstruct the dense 3D representations of scenes. MVS has potential applications in the fields of autonomous driving (unstructured environment construction) and robotic navigation (visual-inertial navigation). To mitigate the error of depth estimation in low-textured or occluded regions, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. The improvements of this work over the state of the art are as follows: 1) Sparse costs are constructed to jointly predict the initial depth map and surface normal by cost regularization, which proves that the surface normals can be estimated in this way with low memory consumption. 2) A new edge refinement block is developed to refine the coarse surface normal to obtain a fine-grained surface normal map. 3) Instead of using the general variance-based metric to equally aggregate cost, a new content-adaptive cost aggregation mechanism based on the similarity of the neighboring surface normal is designed for reliable cost aggregation. To the best of our knowledge, the proposed work is the first trainable network that leverages surface normal as guidance to capture neighboring pixel-visibility, which is an effective supplement to existing depth/normal estimation frameworks. Experimental results indicate that our method can not only achieve accurate depth estimation for scene perception but also make no concession to the real-time performance and limited memory bottleblock. Multiple-view stereo (MVS) aims to reconstruct the dense 3D representations of scenes. It is widely used in the fields of industrial measurement, autonomous driving, and robotic navigation. To mitigate the error of depth estimation in challenging scenarios, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. Our method is the first trainable network that leverages surface normal as pixel-visibility guidance to aggregate reliable cost, which could achieve accurate depth estimation and provide the perception ability for the robot. The proposed method has great potential in the fields of 3D reconstruction, industrial measurement, and robotic navigation to estimate real-time and accurate depth with limited memory consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
55秒前
59秒前
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
袁青寒完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
魔术师完成签到 ,获得积分10
2分钟前
2分钟前
瞿寒完成签到,获得积分10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助huenguyenvan采纳,获得10
2分钟前
李健应助阿萨卡先生采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Ava应助阿萨卡先生采纳,获得10
3分钟前
ZaZa完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李剑鸿完成签到,获得积分10
3分钟前
李剑鸿发布了新的文献求助100
3分钟前
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
junzzz完成签到 ,获得积分10
4分钟前
爆米花应助Omni采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
aming发布了新的文献求助10
4分钟前
可了不得完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210