Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments

全球导航卫星系统应用 计算机科学 激光雷达 惯性导航系统 卫星系统 实时计算 导航系统 全球导航卫星系统增强 遥感 测距 精密点定位 全球定位系统 方向(向量空间) 电信 地理 数学 几何学
作者
Shengyu Li,Shiwen Wang,Yuxuan Zhou,Zhiheng Shen,Xingxing Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24721-24735 被引量:69
标识
DOI:10.1109/jiot.2022.3194544
摘要

The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, the global navigation satellite system (GNSS) is recognized as an important approach for worldwide positioning services. However, its application is limited in urban areas due to severe signal attenuation, reflections, and blockages. Inertial navigation system (INS) can provide high-precision navigation outputs within a short period, but its accuracy suffers from error accumulation, especially when equipped with the low-cost microelectromechanical system (MEMS) inertial measurement units (IMUs). In addition, light detection and ranging (LiDAR) is becoming more common as an option in vehicles, which can detect rich geometric information in the environment for ego-motion estimation. Aiming at taking advantage of the complementary characteristics of these onboard technologies to navigate in urban environments, a tightly coupled multi-GNSS precise point positioning (PPP)/INS/LiDAR integrated system is proposed. We also develop an LiDAR sliding-window plane-feature tracking method to further improve navigation accuracy and computational efficiency. The performance of the proposed integrated system was evaluated in vehicular experiments with different GNSS observation conditions. Results indicate that our proposed GNSS/INS/LiDAR integration can maintain submeter level horizontal positioning accuracy in GNSS-challenging environments, with improvements of (73.3%, 59.7%, and 64.2%) compared to traditional GNSS/INS integration. Moreover, the plane-feature tracking method is proved to outperform traditional point-to-line and point-to-plane scan matching in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定傲菡发布了新的文献求助10
刚刚
EL发布了新的文献求助10
1秒前
枕星发布了新的文献求助10
1秒前
伍次友发布了新的文献求助10
1秒前
CClaire发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
丹丹完成签到 ,获得积分10
3秒前
爆米花应助孤独的钻石采纳,获得10
3秒前
全球发布了新的文献求助10
3秒前
高山和鸟完成签到,获得积分10
4秒前
Akim应助戴冬梅采纳,获得10
4秒前
桐桐应助Zhj采纳,获得10
4秒前
周小物给周小物的求助进行了留言
4秒前
17发布了新的文献求助10
5秒前
刀刀完成签到,获得积分10
5秒前
九千七完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
小蘑菇应助nyzcc采纳,获得10
6秒前
昏睡的蟠桃应助Lily采纳,获得10
7秒前
sunstar发布了新的文献求助10
7秒前
Vincent完成签到,获得积分10
7秒前
8秒前
gao456789发布了新的文献求助150
8秒前
六号线完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
9秒前
沈才佳发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
baolong完成签到,获得积分10
9秒前
隐形路灯完成签到 ,获得积分10
9秒前
zahahaha发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152