Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments

全球导航卫星系统应用 计算机科学 激光雷达 惯性导航系统 卫星系统 实时计算 导航系统 全球导航卫星系统增强 遥感 测距 精密点定位 全球定位系统 方向(向量空间) 电信 地理 数学 几何学
作者
Shengyu Li,Shiwen Wang,Yuxuan Zhou,Zhiheng Shen,Xingxing Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24721-24735 被引量:31
标识
DOI:10.1109/jiot.2022.3194544
摘要

The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, the global navigation satellite system (GNSS) is recognized as an important approach for worldwide positioning services. However, its application is limited in urban areas due to severe signal attenuation, reflections, and blockages. Inertial navigation system (INS) can provide high-precision navigation outputs within a short period, but its accuracy suffers from error accumulation, especially when equipped with the low-cost microelectromechanical system (MEMS) inertial measurement units (IMUs). In addition, light detection and ranging (LiDAR) is becoming more common as an option in vehicles, which can detect rich geometric information in the environment for ego-motion estimation. Aiming at taking advantage of the complementary characteristics of these onboard technologies to navigate in urban environments, a tightly coupled multi-GNSS precise point positioning (PPP)/INS/LiDAR integrated system is proposed. We also develop an LiDAR sliding-window plane-feature tracking method to further improve navigation accuracy and computational efficiency. The performance of the proposed integrated system was evaluated in vehicular experiments with different GNSS observation conditions. Results indicate that our proposed GNSS/INS/LiDAR integration can maintain submeter level horizontal positioning accuracy in GNSS-challenging environments, with improvements of (73.3%, 59.7%, and 64.2%) compared to traditional GNSS/INS integration. Moreover, the plane-feature tracking method is proved to outperform traditional point-to-line and point-to-plane scan matching in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夜完成签到,获得积分10
1秒前
distinguish发布了新的文献求助10
2秒前
Ting完成签到,获得积分10
2秒前
哇呀呀完成签到 ,获得积分10
2秒前
米饭辣椒完成签到,获得积分10
3秒前
单薄惜文发布了新的文献求助30
3秒前
3秒前
4秒前
一叶之秋完成签到 ,获得积分10
4秒前
恩雁发布了新的文献求助10
5秒前
bsusse完成签到,获得积分10
8秒前
FF完成签到,获得积分10
8秒前
9秒前
shensir发布了新的文献求助10
9秒前
9秒前
xuhang发布了新的文献求助10
9秒前
10秒前
anyang完成签到,获得积分10
11秒前
12秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得30
15秒前
正直的友容完成签到,获得积分10
15秒前
16秒前
huangjs发布了新的文献求助10
16秒前
海风发布了新的文献求助10
16秒前
move完成签到,获得积分10
16秒前
17秒前
qcl发布了新的文献求助30
17秒前
17秒前
长孙烙发布了新的文献求助80
18秒前
Ode完成签到,获得积分10
19秒前
欣喜惜筠完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115