Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments

全球导航卫星系统应用 计算机科学 激光雷达 惯性导航系统 卫星系统 实时计算 导航系统 全球导航卫星系统增强 遥感 测距 精密点定位 全球定位系统 方向(向量空间) 电信 地理 数学 几何学
作者
Shengyu Li,Shiwen Wang,Yuxuan Zhou,Zhiheng Shen,Xingxing Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24721-24735 被引量:69
标识
DOI:10.1109/jiot.2022.3194544
摘要

The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, the global navigation satellite system (GNSS) is recognized as an important approach for worldwide positioning services. However, its application is limited in urban areas due to severe signal attenuation, reflections, and blockages. Inertial navigation system (INS) can provide high-precision navigation outputs within a short period, but its accuracy suffers from error accumulation, especially when equipped with the low-cost microelectromechanical system (MEMS) inertial measurement units (IMUs). In addition, light detection and ranging (LiDAR) is becoming more common as an option in vehicles, which can detect rich geometric information in the environment for ego-motion estimation. Aiming at taking advantage of the complementary characteristics of these onboard technologies to navigate in urban environments, a tightly coupled multi-GNSS precise point positioning (PPP)/INS/LiDAR integrated system is proposed. We also develop an LiDAR sliding-window plane-feature tracking method to further improve navigation accuracy and computational efficiency. The performance of the proposed integrated system was evaluated in vehicular experiments with different GNSS observation conditions. Results indicate that our proposed GNSS/INS/LiDAR integration can maintain submeter level horizontal positioning accuracy in GNSS-challenging environments, with improvements of (73.3%, 59.7%, and 64.2%) compared to traditional GNSS/INS integration. Moreover, the plane-feature tracking method is proved to outperform traditional point-to-line and point-to-plane scan matching in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助优秀的行云采纳,获得10
刚刚
简单河马完成签到,获得积分10
刚刚
若宫伊芙发布了新的文献求助30
刚刚
dichloro发布了新的文献求助10
刚刚
法码完成签到,获得积分10
1秒前
1秒前
Ge完成签到,获得积分10
1秒前
乐乐应助wwww采纳,获得10
2秒前
Cyrus2022发布了新的文献求助30
2秒前
今后应助gdh采纳,获得10
2秒前
yeurekar完成签到,获得积分10
3秒前
直率翠绿完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
aerosol完成签到,获得积分10
4秒前
彭于晏应助大胆的岂愈采纳,获得10
4秒前
香蕉觅云应助May采纳,获得10
4秒前
5秒前
万能图书馆应助ooooodai采纳,获得10
5秒前
6秒前
开心酬海发布了新的文献求助10
6秒前
cxh完成签到,获得积分20
7秒前
游一完成签到,获得积分10
8秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
dayaya完成签到,获得积分10
9秒前
共享精神应助哈哈哈采纳,获得10
9秒前
9秒前
9秒前
情怀应助gyx采纳,获得10
11秒前
11秒前
燕子发布了新的文献求助10
11秒前
11秒前
12秒前
迅速不可发布了新的文献求助10
12秒前
12秒前
欢喜的棉花糖应助薄荷采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238