Analysis and prediction of the joint strength of friction stir welded Aluminium 5754 to polyamide using response surface methodology and artificial neural network

材料科学 极限抗拉强度 搅拌摩擦焊 响应面法 复合材料 焊接 抗剪强度(土壤) 结构工程 计算机科学 机器学习 环境科学 土壤科学 工程类 土壤水分
作者
SJ Adarsh,Arivazhagan Natarajan
出处
期刊:Journal of Thermoplastic Composite Materials [SAGE]
卷期号:: 089270572211330-089270572211330
标识
DOI:10.1177/08927057221133091
摘要

Lightweight hybrid structures are developing these days due to increased demand for fuel economy and lower emissions in the automotive and aerospace industries. This study aims to analyse and optimise the influence of friction stir welding (FSW) process parameters on the tensile shear strength of the aluminium-polyamide hybrid joint. The study on the influence of each parameter on the joint strength helps define the bonding mechanism while joining aluminium-polymer hybrid structures. Optical microscopy and scanning electron microscopy (SEM) were used for microstructural examination. A SEM image of the weld’s cross-sectional area shows micro and macro mechanical interlocks with a small interfacial gap which indicates better joint strength. An elemental area mapping investigation of the weld zone reveals fine polymer and aluminium mixing along the interaction region. In addition, FSW parameters have been optimized to maximize the tensile shear strength of aluminium-polyamide hybrid joints. A mathematical model for tensile shear strength in terms of FSW parameters is developed using response surface methodology (RSM). A predictive model was developed using an Artificial Neural Network (ANN) to validate RSM predicted results. The analysis of variance (ANOVA) shows that the actual and predicted values have a satisfactory correlation. ANN methods are better than regression models in predicting tensile shear strength within input welding parameter ranges. The process variables were optimised using the desirability function analysis. The maximum joint tensile shear strength of about 19.74 MPa and attained at optimal FSW parameters, i.e. rotational tool speed of 1421 r/min, welding speed of 27 mm/min, and tool tilt angle of 1°. The regression coefficient for the ANN model was 0.988 for the test data set, indicating that the developed model is appropriate for predicting tensile shear strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎嘤斯坦完成签到,获得积分10
1秒前
1秒前
sweetbearm应助潦草采纳,获得10
2秒前
sunsunsun发布了新的文献求助10
2秒前
酷波er应助Mars采纳,获得10
3秒前
迪士尼在逃后母完成签到,获得积分10
3秒前
3秒前
我是老大应助su采纳,获得10
4秒前
hhh发布了新的文献求助10
5秒前
6秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
7秒前
神可馨完成签到 ,获得积分10
8秒前
Hangerli发布了新的文献求助20
8秒前
HealthyCH完成签到,获得积分10
8秒前
li完成签到,获得积分10
9秒前
10秒前
ononon发布了新的文献求助10
12秒前
12秒前
liu完成签到,获得积分10
14秒前
LWJ发布了新的文献求助10
15秒前
16秒前
大反应釜完成签到,获得积分10
16秒前
TT发布了新的文献求助10
19秒前
Jenny发布了新的文献求助10
21秒前
21秒前
完美凝竹发布了新的文献求助10
21秒前
我是站长才怪应助细腻沅采纳,获得10
22秒前
JG完成签到 ,获得积分10
22秒前
hhh完成签到,获得积分20
22秒前
科研通AI5应助想瘦的海豹采纳,获得10
23秒前
随性完成签到 ,获得积分10
23秒前
自由的信仰完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
夏夏发布了新的文献求助10
28秒前
打打应助Hangerli采纳,获得10
30秒前
完美凝竹完成签到,获得积分10
31秒前
zfzf0422发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824