Analysis and prediction of the joint strength of friction stir welded Aluminium 5754 to polyamide using response surface methodology and artificial neural network

材料科学 极限抗拉强度 搅拌摩擦焊 响应面法 复合材料 焊接 抗剪强度(土壤) 结构工程 计算机科学 机器学习 环境科学 土壤科学 工程类 土壤水分
作者
SJ Adarsh,Arivazhagan Natarajan
出处
期刊:Journal of Thermoplastic Composite Materials [SAGE]
卷期号:: 089270572211330-089270572211330
标识
DOI:10.1177/08927057221133091
摘要

Lightweight hybrid structures are developing these days due to increased demand for fuel economy and lower emissions in the automotive and aerospace industries. This study aims to analyse and optimise the influence of friction stir welding (FSW) process parameters on the tensile shear strength of the aluminium-polyamide hybrid joint. The study on the influence of each parameter on the joint strength helps define the bonding mechanism while joining aluminium-polymer hybrid structures. Optical microscopy and scanning electron microscopy (SEM) were used for microstructural examination. A SEM image of the weld’s cross-sectional area shows micro and macro mechanical interlocks with a small interfacial gap which indicates better joint strength. An elemental area mapping investigation of the weld zone reveals fine polymer and aluminium mixing along the interaction region. In addition, FSW parameters have been optimized to maximize the tensile shear strength of aluminium-polyamide hybrid joints. A mathematical model for tensile shear strength in terms of FSW parameters is developed using response surface methodology (RSM). A predictive model was developed using an Artificial Neural Network (ANN) to validate RSM predicted results. The analysis of variance (ANOVA) shows that the actual and predicted values have a satisfactory correlation. ANN methods are better than regression models in predicting tensile shear strength within input welding parameter ranges. The process variables were optimised using the desirability function analysis. The maximum joint tensile shear strength of about 19.74 MPa and attained at optimal FSW parameters, i.e. rotational tool speed of 1421 r/min, welding speed of 27 mm/min, and tool tilt angle of 1°. The regression coefficient for the ANN model was 0.988 for the test data set, indicating that the developed model is appropriate for predicting tensile shear strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安然完成签到,获得积分10
刚刚
panziye完成签到,获得积分20
刚刚
eAN发布了新的文献求助10
刚刚
xia_发布了新的文献求助10
刚刚
阔达小懒虫完成签到,获得积分10
1秒前
3秒前
ding应助笇采余采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
淡淡的若冰应助Yara.H采纳,获得10
6秒前
Lucas应助panziye采纳,获得20
6秒前
Yon完成签到 ,获得积分10
7秒前
Lizhiiiy发布了新的文献求助10
7秒前
7秒前
shangchen发布了新的文献求助10
8秒前
Timo干物类完成签到,获得积分10
8秒前
8秒前
安然发布了新的文献求助10
8秒前
8秒前
9秒前
ailyxixi发布了新的文献求助10
9秒前
Ya发布了新的文献求助10
10秒前
材1完成签到 ,获得积分10
11秒前
纯真的尔岚完成签到,获得积分10
11秒前
12秒前
liii完成签到 ,获得积分10
12秒前
GuangliangGao发布了新的文献求助10
12秒前
娜娜完成签到,获得积分10
12秒前
嗯呐完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
我是老大应助小孙采纳,获得10
13秒前
小蘑菇应助火树银花采纳,获得30
13秒前
shaw发布了新的文献求助10
14秒前
tivyg'lk发布了新的文献求助10
14秒前
牛安荷完成签到,获得积分10
15秒前
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147764
求助须知:如何正确求助?哪些是违规求助? 2798817
关于积分的说明 7831609
捐赠科研通 2455685
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587