Cooperated Spectral Low-Rankness Prior and Deep Spatial Prior for HSI Unsupervised Denoising

高光谱成像 人工智能 计算机科学 降噪 模式识别(心理学) 深度学习 噪音(视频) 卷积神经网络 特征提取 图像(数学)
作者
Qiang Zhang,Qiangqiang Yuan,Meiping Song,Haoyang Yu,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 6356-6368 被引量:25
标识
DOI:10.1109/tip.2022.3211471
摘要

Model-driven methods and data-driven methods have been widely developed for hyperspectral image (HSI) denoising. However, there are pros and cons in both model-driven and data-driven methods. To address this issue, we develop a self-supervised HSI denoising method via integrating model-driven with data-driven strategy. The proposed framework simultaneously cooperates the spectral low-rankness prior and deep spatial prior (SLRP-DSP) for HSI self-supervised denoising. SLRP-DSP introduces the Tucker factorization via orthogonal basis and reduced factor, to capture the global spectral low-rankness prior in HSI. Besides, SLRP-DSP adopts a self-supervised way to learn the deep spatial prior. The proposed method doesn't need a large number of clean HSIs as the label samples. Through the self-supervised learning, SLRP-DSP can adaptively adjust the deep spatial prior from self-spatial information for reduced spatial factor denoising. An alternating iterative optimization framework is developed to exploit the internal low-rankness prior of third-order tensors and the spatial feature extraction capacity of convolutional neural network. Compared with both existing model-driven methods and data-driven methods, experimental results manifest that the proposed SLRP-DSP outperforms on mixed noise removal in different noisy HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzz发布了新的文献求助10
刚刚
1秒前
传奇3应助tiantian采纳,获得10
2秒前
Lucas应助sara采纳,获得10
2秒前
2秒前
3秒前
3秒前
马不停蹄完成签到,获得积分10
5秒前
听话的豆芽完成签到,获得积分10
5秒前
5秒前
大模型应助keyanyan采纳,获得10
6秒前
科研通AI5应助亲亲紫荆采纳,获得30
6秒前
司空豁应助宇小姐采纳,获得10
7秒前
7秒前
7秒前
庆幸发布了新的文献求助10
8秒前
YF_1987发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
赘婿应助愤怒的梦柏采纳,获得10
10秒前
领导范儿应助KD357采纳,获得10
10秒前
嘻嘻嘻发布了新的文献求助10
10秒前
10秒前
11秒前
文刀发布了新的文献求助10
11秒前
lll发布了新的文献求助20
11秒前
zhe完成签到 ,获得积分10
11秒前
陈惠卿88完成签到,获得积分10
12秒前
共享精神应助木木三采纳,获得10
12秒前
12秒前
考博上岸26完成签到 ,获得积分10
12秒前
华仔应助xunoverflow采纳,获得10
13秒前
14秒前
FeLaN发布了新的文献求助10
14秒前
bkagyin应助庆幸采纳,获得10
14秒前
李雩完成签到 ,获得积分10
14秒前
15秒前
angelalxj关注了科研通微信公众号
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343