子宫内膜癌
组织病理学
辅助治疗
医学
病态的
佐剂
阶段(地层学)
随机对照试验
个性化医疗
癌症
金标准(测试)
肿瘤科
内科学
妇科
病理
生物信息学
生物
古生物学
作者
Sarah Volinsky-Fremond,Nanda Horeweg,Sonali Andani,Jurriaan Barkey Wolf,Maxime W. Lafarge,Cor D. de Kroon,Gitte Ørtoft,Estrid Høgdall,Jouke Dijkstra,Jan J. Jobsen,Ludy Lutgens,Melanie Powell,Linda Mileshkin,Helen Mackay,Alexandra Léary,Dionyssios Katsaros,Hans W. Nijman,Stephanie M. de Boer,Remi A. Nout,Marco de Bruyn
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2024-05-24
卷期号:30 (7): 1962-1973
被引量:10
标识
DOI:10.1038/s41591-024-02993-w
摘要
Abstract Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal ( n = 353) and two external ( n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan–Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC.
科研通智能强力驱动
Strongly Powered by AbleSci AI