Protein-Peptide Binding Residue Prediction Based on Protein Language Models and Cross-Attention Mechanism

残留物(化学) 机制(生物学) 化学 计算生物学 计算机科学 生物化学 生物 物理 量子力学
作者
Jun Hu,Kaixin Chen,B. Dharma Rao,Maha A. Thafar,Somayah Albaradei,Muhammad Arif
标识
DOI:10.2139/ssrn.4826942
摘要

Accurate identifications of protein-peptide binding residues are essential for protein-peptide interactions and advancing drug discovery. To address this problem, extensive research efforts have been made to design more discriminative feature representations. However, extracting these explicit features usually depend on third-party tools, resulting in low computational efficacy and suffering from low predictive performance. In this study, we design an end-to-end deep learning-based method, E2EPep, for protein-peptide binding residue prediction using protein sequence only. E2EPep first employs and fine-tunes two state-of-the-art pre-trained protein language models that can extract two different high-latent feature representations from protein sequences. A novel feature fusion module is then designed in E2EPep to fuse and optimize the above two feature representations of binding residues. In addition, we have also design E2EPep+, which integrates E2EPep and PepBCL models, to improve the prediction performance. Experimental results on two independent test datasets show that the mean AUC and mean MCC values for E2EPep and E2EPep+ are significantly higher than most existing sequence-based methods and are comparable to state-of-the-art structure-based predictors. Detailed data analysis shows that the primary strength of E2EPep lies in the effectiveness of feature representation using cross-attention mechanism to fuse the embeddings generated by two fine-tuned protein language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜仔发布了新的文献求助10
刚刚
牛肉干关注了科研通微信公众号
1秒前
cherry发布了新的文献求助10
1秒前
1秒前
科研通AI5应助fxx2021采纳,获得10
1秒前
斯文败类应助黎缘采纳,获得10
1秒前
2秒前
2090完成签到,获得积分10
2秒前
2秒前
Lynn完成签到,获得积分10
3秒前
卷心菜完成签到,获得积分10
4秒前
Patrick完成签到,获得积分10
4秒前
从容襄完成签到,获得积分10
4秒前
5秒前
核桃酥完成签到,获得积分20
5秒前
华仔应助王汉韬采纳,获得10
5秒前
5秒前
andyxrz发布了新的文献求助10
6秒前
醉舞烟罗发布了新的文献求助10
6秒前
6秒前
6秒前
yaoyao完成签到 ,获得积分20
7秒前
阳光总在风雨后完成签到,获得积分10
7秒前
洁净路灯完成签到 ,获得积分10
7秒前
11111完成签到,获得积分10
8秒前
黄豆芽完成签到,获得积分20
9秒前
xlx发布了新的文献求助10
9秒前
诚心闭月完成签到,获得积分10
9秒前
10秒前
10秒前
小中完成签到,获得积分10
10秒前
Akim应助Jin采纳,获得10
10秒前
zyj完成签到,获得积分10
11秒前
MrFamous发布了新的文献求助10
11秒前
fxx2021完成签到,获得积分10
11秒前
lbx发布了新的文献求助10
11秒前
xqwwqx发布了新的文献求助10
12秒前
12秒前
12秒前
活力的妙之完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672