Protein-Peptide Binding Residue Prediction Based on Protein Language Models and Cross-Attention Mechanism

残留物(化学) 机制(生物学) 化学 计算生物学 计算机科学 生物化学 生物 物理 量子力学
作者
Jun Hu,Kaixin Chen,B. Dharma Rao,Maha A. Thafar,Somayah Albaradei,Muhammad Arif
标识
DOI:10.2139/ssrn.4826942
摘要

Accurate identifications of protein-peptide binding residues are essential for protein-peptide interactions and advancing drug discovery. To address this problem, extensive research efforts have been made to design more discriminative feature representations. However, extracting these explicit features usually depend on third-party tools, resulting in low computational efficacy and suffering from low predictive performance. In this study, we design an end-to-end deep learning-based method, E2EPep, for protein-peptide binding residue prediction using protein sequence only. E2EPep first employs and fine-tunes two state-of-the-art pre-trained protein language models that can extract two different high-latent feature representations from protein sequences. A novel feature fusion module is then designed in E2EPep to fuse and optimize the above two feature representations of binding residues. In addition, we have also design E2EPep+, which integrates E2EPep and PepBCL models, to improve the prediction performance. Experimental results on two independent test datasets show that the mean AUC and mean MCC values for E2EPep and E2EPep+ are significantly higher than most existing sequence-based methods and are comparable to state-of-the-art structure-based predictors. Detailed data analysis shows that the primary strength of E2EPep lies in the effectiveness of feature representation using cross-attention mechanism to fuse the embeddings generated by two fine-tuned protein language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河马卡卡发布了新的文献求助20
1秒前
晃悠悠的可乐完成签到 ,获得积分10
1秒前
1秒前
2秒前
4秒前
5秒前
7秒前
所所应助今日甜分超标采纳,获得10
7秒前
Kk发布了新的文献求助10
10秒前
10秒前
12秒前
青荷完成签到,获得积分10
12秒前
14秒前
小武哥完成签到 ,获得积分10
15秒前
ding应助Kk采纳,获得10
17秒前
an完成签到,获得积分10
17秒前
啦啦啦发布了新的文献求助10
18秒前
威武怀蕊发布了新的文献求助10
18秒前
19秒前
21秒前
隐形曼青应助黙宇循光采纳,获得10
22秒前
23秒前
一粒米发布了新的文献求助40
24秒前
彭于晏应助zz采纳,获得10
24秒前
24秒前
25秒前
慕青应助迅速谷冬采纳,获得10
27秒前
28秒前
28秒前
29秒前
29秒前
Colin关注了科研通微信公众号
30秒前
30秒前
T012发布了新的文献求助10
32秒前
黙宇循光发布了新的文献求助10
33秒前
彭于晏应助叶95采纳,获得10
35秒前
35秒前
xzDoctor发布了新的文献求助10
35秒前
38秒前
秀丽的正豪完成签到 ,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954