催化作用
密度泛函理论
硝酸盐
氨
浸出(土壤学)
吸附
无机化学
氨生产
电子转移
化学
材料科学
光化学
计算化学
有机化学
物理化学
环境科学
土壤科学
土壤水分
作者
Yifei Nie,Hongping Yan,Suwei Lu,Hongwei Zhang,Tingting Qi,Shijing Liang,Lilong Jiang
出处
期刊:Chinese Journal of Catalysis
[China Science Publishing & Media Ltd.]
日期:2024-04-01
卷期号:59: 293-302
标识
DOI:10.1016/s1872-2067(23)64618-2
摘要
Electrocatalytic nitrate reduction reaction (NO3RR) has been capturing immense interest in the industrial application of ammonia synthesis, and it involves complex reaction routes accompanied by multi-electron transfer, thus causing a challenge to achieve high efficiency for catalysts. Herein, we customized the Cu-O-Ti-Ov (oxygen vacancy) structure on the Cu/TiO2 catalyst, identified through density functional theory (DFT) calculations as the synergic active site for NO3RR. It is found that Cu-O-Ti-Ov site facilitates the adsorption/association of NOx– and promotes the hydrogenation of NO3– to NH3 via adsorbed *H species. This effectively suppresses the competing hydrogen evolution reaction (HER) and exhibits a lower reaction energy barrier for NO3RR, with the reaction pathways: NO3* → NO2* → HONO* → NO* → *NOH → *N → *NH → *NH2 → *NH3 → NH3. The optimized Cu/TiO2 catalyst with rich Cu-O-Ti-Ov sites achieves an NH3 yield rate of 3046.5 μg h–1 mgcat–1 at –1.0 V vs. RHE, outperforming most of the reported activities. Furthermore, the construction of Cu-O-Ti-Ov sites significantly mitigates the leaching of Cu species, enhancing the stability of the Cu/TiO2 catalyst. Additionally, a mechanistic study, using in situ characterizations and various comparative experiments, further confirms the strong synergy between Cu, Ti, and Ov sites, which is consistent with previous DFT calculations. This study provides a new strategy for designing efficient and stable electrocatalysts in the field of ammonia synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI