Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction

催化作用 密度泛函理论 硝酸盐 浸出(土壤学) 吸附 无机化学 氨生产 电子转移 化学 材料科学 光化学 计算化学 有机化学 物理化学 环境科学 土壤科学 土壤水分
作者
Yifei Nie,Hongping Yan,Suwei Lu,Hongwei Zhang,Tingting Qi,Shijing Liang,Lilong Jiang
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:59: 293-302
标识
DOI:10.1016/s1872-2067(23)64618-2
摘要

Electrocatalytic nitrate reduction reaction (NO3RR) has been capturing immense interest in the industrial application of ammonia synthesis, and it involves complex reaction routes accompanied by multi-electron transfer, thus causing a challenge to achieve high efficiency for catalysts. Herein, we customized the Cu-O-Ti-Ov (oxygen vacancy) structure on the Cu/TiO2 catalyst, identified through density functional theory (DFT) calculations as the synergic active site for NO3RR. It is found that Cu-O-Ti-Ov site facilitates the adsorption/association of NOx– and promotes the hydrogenation of NO3– to NH3 via adsorbed *H species. This effectively suppresses the competing hydrogen evolution reaction (HER) and exhibits a lower reaction energy barrier for NO3RR, with the reaction pathways: NO3* → NO2* → HONO* → NO* → *NOH → *N → *NH → *NH2 → *NH3 → NH3. The optimized Cu/TiO2 catalyst with rich Cu-O-Ti-Ov sites achieves an NH3 yield rate of 3046.5 μg h–1 mgcat–1 at –1.0 V vs. RHE, outperforming most of the reported activities. Furthermore, the construction of Cu-O-Ti-Ov sites significantly mitigates the leaching of Cu species, enhancing the stability of the Cu/TiO2 catalyst. Additionally, a mechanistic study, using in situ characterizations and various comparative experiments, further confirms the strong synergy between Cu, Ti, and Ov sites, which is consistent with previous DFT calculations. This study provides a new strategy for designing efficient and stable electrocatalysts in the field of ammonia synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助单薄凌蝶采纳,获得50
1秒前
1秒前
111完成签到,获得积分10
1秒前
小马甲应助117采纳,获得10
1秒前
甜甜的猫咪完成签到,获得积分10
1秒前
1秒前
66应助马佳凯采纳,获得10
1秒前
2秒前
是述不是沭完成签到,获得积分10
2秒前
3秒前
lei完成签到,获得积分10
3秒前
瘦瘦的背包完成签到,获得积分10
4秒前
4秒前
赘婿应助Elaine采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研小白完成签到,获得积分10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得50
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
控制小弟应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
彭于晏完成签到,获得积分10
6秒前
勤劳元瑶完成签到,获得积分10
6秒前
whatever举报muzi求助涉嫌违规
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740