Prediction of key quality attributes in Salvia miltiorrhiza standard decoction using a Gaussian process regression model

丹参 汤剂 化学 线性回归 非线性回归 标准差 统计 回归分析 数学 传统医学 中医药 医学 替代医学 病理
作者
Huosheng Zou,Zixia Zhang,Hongxu Zhang,Yuan Chen,Hui Zhang,Jizhong Yan
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (6): 1345-1357 被引量:1
标识
DOI:10.1002/pca.3368
摘要

Abstract Introduction Nonstationary, nonlinear mass transfer in traditional Chinese medicine (TCM) extraction poses challenges to correlating process characteristics with quality parameters, particularly in defining clear parameter ranges for the process. Objectives The aim of the study was to provide a solution for quality consistency analysis in TCM preparation processes. Materials and methods Salvia miltiorrhiza was taken as an example for 15 batches of standard decoction. Using aqueous extract, alcoholic extract, and the content of salvianolic acid B as herb material key quality attributes, multiple nonlinear regression, Gaussian process regression, and artificial neural network models were employed to predict the key quality attributes including the paste yield, the content of salvianolic acid B, and the transfer rate. The evaluation criteria were root mean square error, mean absolute percentage error, and R 2 . Results The Gaussian process regression model had the best prediction effect on the paste yield, the content of salvianolic acid B, and the transfer rate, with R 2 being 0.918, 0.934, and 0.919, respectively. Utilizing Gaussian process regression model confidence intervals, along with Shewhart control and intervals optimized through process capability index analysis, the quality control range of the standard decoction was determined as follows: paste yield, 25.14%–33.19%; salvianolic acid B content, 2.62%–4.78%; and transfer rate, 56.88%–64.80%. Conclusion This study combined the preparation process of standard decoction with the Gaussian process regression model, accurately predicted the key quality attributes, and determined the quality parameter range by using process analysis tools, providing a new idea for the quality consistency standard of TCM processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yixuebing发布了新的文献求助10
1秒前
科研通AI6应助阿鹏采纳,获得10
2秒前
张乐渝发布了新的文献求助10
2秒前
caiE完成签到,获得积分10
2秒前
传奇3应助知性的采珊采纳,获得10
3秒前
3秒前
YYYY完成签到,获得积分10
3秒前
时米米米发布了新的文献求助10
4秒前
浅海111发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
诚心靳完成签到,获得积分10
5秒前
Ldq发布了新的文献求助10
6秒前
小铃铛完成签到,获得积分10
9秒前
七月完成签到 ,获得积分10
9秒前
诚心的哈密瓜完成签到 ,获得积分10
10秒前
诚心晓露发布了新的文献求助30
10秒前
xiying发布了新的文献求助10
11秒前
小马甲应助忧心的不言采纳,获得10
13秒前
Sweet完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
哈哈哈啦啦只完成签到,获得积分10
14秒前
14秒前
15秒前
JamesPei应助abc123采纳,获得10
16秒前
16秒前
3AM完成签到,获得积分10
17秒前
18秒前
赘婿应助田博文采纳,获得10
18秒前
19秒前
云馨完成签到,获得积分10
19秒前
张乐渝完成签到,获得积分10
19秒前
顾矜应助zeng采纳,获得10
19秒前
田様应助猪猪hero采纳,获得30
20秒前
20秒前
周小丁发布了新的文献求助30
20秒前
20秒前
hsy完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525055
求助须知:如何正确求助?哪些是违规求助? 4615431
关于积分的说明 14548146
捐赠科研通 4553473
什么是DOI,文献DOI怎么找? 2495321
邀请新用户注册赠送积分活动 1475890
关于科研通互助平台的介绍 1447635