Prediction of key quality attributes in Salvia miltiorrhiza standard decoction using a Gaussian process regression model

丹参 汤剂 化学 线性回归 非线性回归 标准差 统计 回归分析 数学 传统医学 中医药 医学 替代医学 病理
作者
Huosheng Zou,Zixia Zhang,Hongxu Zhang,Yuan Chen,Hui Zhang,Jizhong Yan
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (6): 1345-1357 被引量:1
标识
DOI:10.1002/pca.3368
摘要

Abstract Introduction Nonstationary, nonlinear mass transfer in traditional Chinese medicine (TCM) extraction poses challenges to correlating process characteristics with quality parameters, particularly in defining clear parameter ranges for the process. Objectives The aim of the study was to provide a solution for quality consistency analysis in TCM preparation processes. Materials and methods Salvia miltiorrhiza was taken as an example for 15 batches of standard decoction. Using aqueous extract, alcoholic extract, and the content of salvianolic acid B as herb material key quality attributes, multiple nonlinear regression, Gaussian process regression, and artificial neural network models were employed to predict the key quality attributes including the paste yield, the content of salvianolic acid B, and the transfer rate. The evaluation criteria were root mean square error, mean absolute percentage error, and R 2 . Results The Gaussian process regression model had the best prediction effect on the paste yield, the content of salvianolic acid B, and the transfer rate, with R 2 being 0.918, 0.934, and 0.919, respectively. Utilizing Gaussian process regression model confidence intervals, along with Shewhart control and intervals optimized through process capability index analysis, the quality control range of the standard decoction was determined as follows: paste yield, 25.14%–33.19%; salvianolic acid B content, 2.62%–4.78%; and transfer rate, 56.88%–64.80%. Conclusion This study combined the preparation process of standard decoction with the Gaussian process regression model, accurately predicted the key quality attributes, and determined the quality parameter range by using process analysis tools, providing a new idea for the quality consistency standard of TCM processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSD发布了新的文献求助10
刚刚
1秒前
胡自律完成签到,获得积分10
1秒前
打打应助风-FBDD采纳,获得10
1秒前
左传琦完成签到 ,获得积分10
2秒前
GR发布了新的文献求助10
3秒前
3秒前
开朗的雁完成签到,获得积分10
3秒前
he发布了新的文献求助10
5秒前
毒蜜蜂乘风归来完成签到,获得积分10
5秒前
zhang_y2发布了新的文献求助10
5秒前
5秒前
小二郎应助DONG采纳,获得10
5秒前
AAA完成签到 ,获得积分10
6秒前
科研通AI6应助舒心语梦采纳,获得10
7秒前
7秒前
史萌发布了新的文献求助10
7秒前
优秀的书萱完成签到,获得积分20
7秒前
8秒前
lisier发布了新的文献求助30
9秒前
无限灵松发布了新的文献求助10
9秒前
lll完成签到,获得积分10
9秒前
11秒前
华仔应助摸鱼鱼采纳,获得10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Sun完成签到 ,获得积分10
13秒前
天天快乐应助HJJHJH采纳,获得10
13秒前
wzt发布了新的文献求助10
13秒前
13秒前
ding应助GR采纳,获得10
13秒前
临风听暮蝉完成签到,获得积分10
14秒前
共享精神应助zaq777brats采纳,获得10
15秒前
呀呀呀发布了新的文献求助10
15秒前
SAY发布了新的文献求助10
15秒前
ji关闭了ji文献求助
16秒前
一区种子选手完成签到,获得积分10
16秒前
jqs完成签到,获得积分10
16秒前
dhan发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154