Prediction of key quality attributes in Salvia miltiorrhiza standard decoction using a Gaussian process regression model

丹参 汤剂 化学 线性回归 非线性回归 标准差 统计 回归分析 数学 传统医学 中医药 医学 替代医学 病理
作者
Huosheng Zou,Zixia Zhang,Hongxu Zhang,Yuan Chen,Hui Zhang,Jizhong Yan
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (6): 1345-1357 被引量:1
标识
DOI:10.1002/pca.3368
摘要

Abstract Introduction Nonstationary, nonlinear mass transfer in traditional Chinese medicine (TCM) extraction poses challenges to correlating process characteristics with quality parameters, particularly in defining clear parameter ranges for the process. Objectives The aim of the study was to provide a solution for quality consistency analysis in TCM preparation processes. Materials and methods Salvia miltiorrhiza was taken as an example for 15 batches of standard decoction. Using aqueous extract, alcoholic extract, and the content of salvianolic acid B as herb material key quality attributes, multiple nonlinear regression, Gaussian process regression, and artificial neural network models were employed to predict the key quality attributes including the paste yield, the content of salvianolic acid B, and the transfer rate. The evaluation criteria were root mean square error, mean absolute percentage error, and R 2 . Results The Gaussian process regression model had the best prediction effect on the paste yield, the content of salvianolic acid B, and the transfer rate, with R 2 being 0.918, 0.934, and 0.919, respectively. Utilizing Gaussian process regression model confidence intervals, along with Shewhart control and intervals optimized through process capability index analysis, the quality control range of the standard decoction was determined as follows: paste yield, 25.14%–33.19%; salvianolic acid B content, 2.62%–4.78%; and transfer rate, 56.88%–64.80%. Conclusion This study combined the preparation process of standard decoction with the Gaussian process regression model, accurately predicted the key quality attributes, and determined the quality parameter range by using process analysis tools, providing a new idea for the quality consistency standard of TCM processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助刘欣怡采纳,获得10
2秒前
小轩窗zst完成签到,获得积分10
2秒前
酷酷的西装完成签到 ,获得积分10
2秒前
sys完成签到,获得积分20
3秒前
Leo完成签到,获得积分10
3秒前
3秒前
liu发布了新的文献求助10
4秒前
与可完成签到,获得积分10
4秒前
4秒前
00发布了新的文献求助10
5秒前
6秒前
林业光魔发布了新的文献求助10
7秒前
323完成签到,获得积分10
8秒前
8秒前
tomatoli完成签到,获得积分10
9秒前
刘欣怡完成签到,获得积分20
9秒前
酷酷的西装关注了科研通微信公众号
10秒前
Feifei133发布了新的文献求助10
10秒前
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
东风徐来发布了新的文献求助50
13秒前
木湾完成签到,获得积分10
13秒前
迅速的雁山关注了科研通微信公众号
13秒前
13秒前
djiwisksk66应助踏实十八采纳,获得10
14秒前
crush_zyd完成签到,获得积分10
14秒前
Priority应助立军采纳,获得30
15秒前
yookia应助立军采纳,获得10
15秒前
香蕉觅云应助立军采纳,获得10
15秒前
无情的君浩应助Acvdonoe采纳,获得10
16秒前
liu完成签到,获得积分10
17秒前
优雅山柏发布了新的文献求助10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993