亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of key quality attributes in Salvia miltiorrhiza standard decoction using a Gaussian process regression model

丹参 汤剂 化学 线性回归 非线性回归 标准差 统计 回归分析 数学 传统医学 中医药 医学 替代医学 病理
作者
Huosheng Zou,Zixia Zhang,Hongxu Zhang,Yuan Chen,Hui Zhang,Jizhong Yan
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (6): 1345-1357 被引量:1
标识
DOI:10.1002/pca.3368
摘要

Abstract Introduction Nonstationary, nonlinear mass transfer in traditional Chinese medicine (TCM) extraction poses challenges to correlating process characteristics with quality parameters, particularly in defining clear parameter ranges for the process. Objectives The aim of the study was to provide a solution for quality consistency analysis in TCM preparation processes. Materials and methods Salvia miltiorrhiza was taken as an example for 15 batches of standard decoction. Using aqueous extract, alcoholic extract, and the content of salvianolic acid B as herb material key quality attributes, multiple nonlinear regression, Gaussian process regression, and artificial neural network models were employed to predict the key quality attributes including the paste yield, the content of salvianolic acid B, and the transfer rate. The evaluation criteria were root mean square error, mean absolute percentage error, and R 2 . Results The Gaussian process regression model had the best prediction effect on the paste yield, the content of salvianolic acid B, and the transfer rate, with R 2 being 0.918, 0.934, and 0.919, respectively. Utilizing Gaussian process regression model confidence intervals, along with Shewhart control and intervals optimized through process capability index analysis, the quality control range of the standard decoction was determined as follows: paste yield, 25.14%–33.19%; salvianolic acid B content, 2.62%–4.78%; and transfer rate, 56.88%–64.80%. Conclusion This study combined the preparation process of standard decoction with the Gaussian process regression model, accurately predicted the key quality attributes, and determined the quality parameter range by using process analysis tools, providing a new idea for the quality consistency standard of TCM processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
14秒前
叶子宁完成签到,获得积分10
21秒前
莉莉斯完成签到 ,获得积分10
42秒前
58秒前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
楚楚完成签到 ,获得积分10
1分钟前
1分钟前
sherry发布了新的文献求助10
1分钟前
隐形曼青应助sherry采纳,获得10
1分钟前
shentaii完成签到,获得积分10
1分钟前
Yyyyyyyyy发布了新的文献求助10
1分钟前
2分钟前
2分钟前
吕懿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
koubi发布了新的文献求助10
2分钟前
2分钟前
season完成签到,获得积分10
2分钟前
犹豫的雁卉完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助Wei采纳,获得10
3分钟前
3分钟前
深情幻巧完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
酷波er应助善良的以亦采纳,获得10
4分钟前
英姑应助Yyyyyyyyy采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543288
求助须知:如何正确求助?哪些是违规求助? 4629401
关于积分的说明 14611196
捐赠科研通 4570722
什么是DOI,文献DOI怎么找? 2505884
邀请新用户注册赠送积分活动 1483112
关于科研通互助平台的介绍 1454464