亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of key quality attributes in Salvia miltiorrhiza standard decoction using a Gaussian process regression model

丹参 汤剂 化学 线性回归 非线性回归 标准差 统计 回归分析 数学 传统医学 中医药 医学 替代医学 病理
作者
Huosheng Zou,Zixia Zhang,Hongxu Zhang,Yuan Chen,Hui Zhang,Jizhong Yan
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (6): 1345-1357 被引量:1
标识
DOI:10.1002/pca.3368
摘要

Abstract Introduction Nonstationary, nonlinear mass transfer in traditional Chinese medicine (TCM) extraction poses challenges to correlating process characteristics with quality parameters, particularly in defining clear parameter ranges for the process. Objectives The aim of the study was to provide a solution for quality consistency analysis in TCM preparation processes. Materials and methods Salvia miltiorrhiza was taken as an example for 15 batches of standard decoction. Using aqueous extract, alcoholic extract, and the content of salvianolic acid B as herb material key quality attributes, multiple nonlinear regression, Gaussian process regression, and artificial neural network models were employed to predict the key quality attributes including the paste yield, the content of salvianolic acid B, and the transfer rate. The evaluation criteria were root mean square error, mean absolute percentage error, and R 2 . Results The Gaussian process regression model had the best prediction effect on the paste yield, the content of salvianolic acid B, and the transfer rate, with R 2 being 0.918, 0.934, and 0.919, respectively. Utilizing Gaussian process regression model confidence intervals, along with Shewhart control and intervals optimized through process capability index analysis, the quality control range of the standard decoction was determined as follows: paste yield, 25.14%–33.19%; salvianolic acid B content, 2.62%–4.78%; and transfer rate, 56.88%–64.80%. Conclusion This study combined the preparation process of standard decoction with the Gaussian process regression model, accurately predicted the key quality attributes, and determined the quality parameter range by using process analysis tools, providing a new idea for the quality consistency standard of TCM processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
吴彦祖发布了新的文献求助10
3秒前
chemj发布了新的文献求助10
4秒前
max发布了新的文献求助10
5秒前
搜集达人应助小小莫采纳,获得10
7秒前
坚强的金鱼完成签到,获得积分10
7秒前
冰西瓜完成签到 ,获得积分0
16秒前
chemj完成签到,获得积分20
16秒前
木木完成签到,获得积分20
19秒前
24秒前
汪洋一叶完成签到,获得积分10
26秒前
木木发布了新的文献求助10
27秒前
曦玥完成签到 ,获得积分10
32秒前
34秒前
37秒前
11完成签到 ,获得积分10
40秒前
43秒前
46秒前
46秒前
shuoshuo完成签到 ,获得积分10
47秒前
笑点低忆之完成签到 ,获得积分10
49秒前
无花果应助笨笨的豆芽采纳,获得10
52秒前
xshuang完成签到,获得积分10
56秒前
852应助科研通管家采纳,获得10
57秒前
57秒前
王者归来完成签到,获得积分10
1分钟前
1分钟前
1分钟前
orbitvox完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
Persist6578完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助jcx采纳,获得10
1分钟前
饼子发布了新的文献求助10
1分钟前
1分钟前
272668789完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469900
求助须知:如何正确求助?哪些是违规求助? 4572919
关于积分的说明 14337640
捐赠科研通 4499821
什么是DOI,文献DOI怎么找? 2465323
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270