A Novel Approach for Diagnosing Transformer Internal Defects and Inrush Current Based on 1DCNN and LSTM Deep Learning

励磁涌流 变压器 计算机科学 人工智能 地质学 电气工程 工程类 电压
作者
Wael Abdulhassan Atiyah
标识
DOI:10.52783/jes.3163
摘要

In power systems, power transformer (Pt) protection plays a vital role in ensuring that customers have a reliable power supply. Correctly recognizing inrush currents from internal defects and preventing differential relay malfunctions are two of biggest challenges facing the differential protection of power transformers. Although previous approaches suggested to overcome these issues have promising outcomes, increasing the accuracy and reducing the execution time and complexity of transformer differential relays are still interesting topics for researchers. Accordingly, a new fault diagnostic method based on wavelet transform (WT) and deep learning is introduced in paper. In the proposed approach, Discrete WT is used to extract the features of differential currents, and combined one-dimensional convolutional neural networks and long short-term memory (1DCNN-LSTM)) is applied for classify internal faults from other abnormal events. High accuracy, no need for any thresholds or transformer parameters and fast fault detection are the main advantages of the proposed approach. The simulation results for a 132/11 kV, 63 MVA power transformer approved the proposed method for its ability to accurately differentiate between inrush currents and internal defects after 5 ms, as well as its accuracy for abnormal event classification of about 99.4%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
burou发布了新的文献求助10
刚刚
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
刚刚
taishang发布了新的文献求助10
1秒前
lyl完成签到,获得积分10
1秒前
李怼怼完成签到,获得积分10
3秒前
Reborn完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得30
4秒前
尚可完成签到 ,获得积分10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
secbox完成签到,获得积分10
4秒前
美满疾应助科研通管家采纳,获得10
4秒前
hhhblabla应助科研通管家采纳,获得20
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
星辰大海应助bobo采纳,获得10
6秒前
研友_ZzrWKZ完成签到,获得积分10
9秒前
10秒前
MaHongyang完成签到,获得积分10
10秒前
12秒前
琉璃苣发布了新的文献求助10
13秒前
笑点低的靳完成签到,获得积分10
13秒前
NexusExplorer应助burou采纳,获得10
13秒前
CodeCraft应助Layqiwook采纳,获得10
16秒前
17秒前
xixixi发布了新的文献求助10
18秒前
大方绯发布了新的文献求助10
19秒前
琉璃苣完成签到,获得积分10
19秒前
美满疾应助非盈采纳,获得10
19秒前
科研鑫完成签到,获得积分10
20秒前
21秒前
22秒前
FashionBoy应助谭一一采纳,获得10
23秒前
25秒前
开放以山完成签到,获得积分10
25秒前
28秒前
xixixi完成签到,获得积分20
28秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347709
求助须知:如何正确求助?哪些是违规求助? 2974173
关于积分的说明 8662625
捐赠科研通 2654789
什么是DOI,文献DOI怎么找? 1453721
科研通“疑难数据库(出版商)”最低求助积分说明 673022
邀请新用户注册赠送积分活动 663223